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• We provide a short background on Streaming Machine Learning (SML)
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Abstract

Continual Learning (CL) and Streaming Machine Learning (SML) study the
ability of agents to learn from a stream of non-stationary data. Despite shar-
ing some similarities, they address different and complementary challenges.
While SML focuses on rapid adaptation after changes (concept drifts), CL
aims to retain past knowledge when learning new tasks. After a brief intro-
duction to CL and SML, we discuss Streaming Continual Learning (SCL),
an emerging paradigm providing a unifying solution to real-world problems,
which may require both SML and CL abilities. We claim that SCL can i)
connect the CL and SML communities, motivating their work towards the
same goal, and ii) foster the design of hybrid approaches that can quickly
adapt to new information (as in SML) without forgetting previous knowledge
(as in CL). We conclude the paper with a motivating example and a set of
experiments, highlighting the need for SCL by showing how CL and SML
alone struggle in achieving rapid adaptation and knowledge retention.
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1. Introduction

Over the last decade, the exponential growth of interconnected digital
systems, driven by platforms such as social media and the Internet of Things
(IoT), has resulted in massive, continuous flows of information. This results
in the production of massive amounts of data, often generated by unbounded
flows called data streams [1]. Data arrives sequentially and continuously over
time, making it impractical to store or revisit them in full.

This streaming scenario challenges traditional machine learning paradigms,
which often assume stationary data and bounded datasets. One of the most
critical obstacles is concept drift [2], a phenomenon where the statistical prop-
erties of the data evolve due to underlying changes in the generative process
(concept). Unlike sporadic anomalies, concept drift reflects structural, often
unforeseeable changes that can render previously learned models unsuitable.

Due to concept drifts, the solution cannot train a model offline on histor-
ical data, since the trained model may soon become obsolete after concept
drifts. Conversely, one must continuously learn from the data stream, mon-
itoring and detecting changes, and adapting to them as rapidly as possible.
Moreover, when learning new concepts, the model may forget what it learned
regarding the previous ones. This issue is particularly critical when the new
concept just expands the learning problem in a new subdomain, without con-
tradicting what has been observed during the previous concepts. In this case,
the model should be able to encapsulate the knowledge associated with the
new concept while retaining the previously acquired one. This idea is associ-
ated with the well-known stability-plasticity dilemma [3, 4, 5], according
to which the model should achieve a trade-off between the ability to learn
new knowledge (plasticity) and the ability to remember the previous (sta-
bility). Too much plasticity leads to forgetting, too much stability prevents
learning new knowledge.

However, forgetting may be desirable in specific situations. When the
new concept contradicts a previously learned one, then the model should not
preserve both. In this situation, avoiding forgetting takes on a more nuanced
meaning. It does not require remembering the entire history of previous
concepts, but rather preserving an up-to-date representation of the current
knowledge while adapting dynamically to changes. Accessing prior knowl-
edge remains a useful skill, as new changes in the data stream might require
quick remembering of previously seen concepts.
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Figure 1: Overview of the structure
of this manuscript. We start with
an introduction to non-stationary
environments, followed by a short
background on streaming and con-
tinual learning, before discussing
the streaming continual learning
paradigm together with an empir-
ical example motivating why it is
needed.

Two main research areas deal with the
mentioned challenges. Streaming Ma-
chine Learning (SML) [1] focuses on pro-
ducing resource-efficient solutions able to
monitor and detect changes, and quickly
adapt to the associated new concepts. SML
prioritizes rapid adaptation over retaining
previous knowledge. Its primary objective is
to perform well on the current concept, even
at the cost of forgetting past information.
There is no explicit concern for preserving
previously acquired knowledge. Instead, the
system is designed to adapt swiftly to evolv-
ing data. If a new concept later requires
reusing past knowledge, the model will sim-
ply relearn it from scratch. Conversely,
Continual Learning (CL) [6] specifically
prioritizes the preservation of the previously
acquired knowledge while learning new con-
cepts over quick adaptation to new con-
cepts. These solutions, however, are meant
to work in settings where new concepts just
expand the problem with additional subdo-
mains, without contradicting what was ob-
served during previous concepts.

Starting with these premises, this work
highlights a clear gap in the literature. SML
and CL are both important and complemen-
tary areas of research. However, on their

own, they are not sufficient to provide a complete solution to real-world prob-
lems that demand continuous learning, rapid adaptation, and the ability to
avoid forgetting (we further elaborate on this point in Section 6). Stream-
ing Continual Learning (SCL) aims at unifying, without replacing, CL
and SML. Recently, the ideas and challenges of SCL are gaining traction and
fostering a positive discussion in the research community. SCL has been ini-
tially suggested in [7], followed up in [8], and the topic of a dedicated special
session at the European Symposium on Artificial Neural Networks (ESANN)
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in 2025 [9].
This paper builds upon the ideas proposed in the tutorial paper from the
aforementioned special session [9]. In this extended version, we provide a
more comprehensive overview of the scenarios, the objectives, and the eval-
uation protocols commonly used nowadays in CL and SML. We also expand
the discussion about available datasets that can be directly used or repur-
posed to match the SCL framework. Finally, we added a motivating exam-
ple showing the need for SCL: popular CL and SML approaches struggle
in achieving both the CL objective (knowledge consolidation) and the SML
objective (quick adaptation).
The paper also introduces the concept of a unified approach and discusses
how this framework could evolve in the future by following specific research
directions. Particularly, Section 2 presents the streaming scenario and the
associated problem of concept drift. Section 3 presents SML, while Section 4
describes CL, by also illustrating the applications of Reinforcement Learning
(RL) in streaming scenarios involving concept drifts. Section 5 introduces
the vision of SCL and its motivation, while Section 6 illustrates an example
supporting the motivations behind SCL. Finally, Section 7 discusses the con-
clusion and the future directions we envision for SCL. Figure 1 provides an
overview of the structure of the paper.

2. Non-stationary data streams

The notion of a data stream emerges in two distinct scenarios, both in-
volving a data source that is never fully accessible all at once. The first
scenario, which we call natural streams, involves data that is generated
continuously and in real-time. A typical example is the IoT, where sensors
continuously gather measurements. In such cases, the model processes the
current data instance (possibly along with a small buffer of recent past in-
stances) and generates predictions accordingly. The second scenario, which
we refer to as artificial streams, arises due to the huge volume of data
available. Here, the model cannot access the entire dataset simultaneously.
Instead, data is accessed incrementally in chunks or batches, effectively sim-
ulating a streaming process where data points arrive over time.

The most studied case in literature is the classification problem. In this
case, the data stream can be defined as an ordered and unbdoudend sequence
of data points DS : d1, d2, ..., dt, dt+1, ..., where dt is the data point at time t,
which is associated with a feature vector Xt and a label yt (which is initially
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unknown). The goal is to predict the label ŷt given the feature vector Xt,
and, thus, learning the decision boundary defined by the probability distri-
bution P (yt|Xt). The data stream results from a process called concept [10]
which generates data points according to a probability distribution P (Xt, yt).
Notably, this process is hidden and inaccessible.

The crucial problem that makes the traditional machine learning paradigm
inapplicable is that P (Xt, yt) may change over time. As a result, the model
learned using the previous concept becomes obsolete and requires updates
or changes. In particular, the concept drift is the need for a change in the
learned model due to a change in the concept [2, 11, 12, 13]. Usually, these
changes are unpredictable since the concept is hidden.

The literature distinguishes between virtual drifts and real drifts when
considering the impact on the distribution P (Xt, yt). A real drift is defined
as a change in the decision boundary P (yt | Xt) [14]. Conversely, the defi-
nition of a virtual drift has received many interpretations over the years.
It was originally defined as a change in the input distribution P (Xt) that
necessitates a model update [2, 12, 13, 15]. Later works [14, 16, 17, 11, 18]
described it as a change in P (yt) or P (Xt | yt) that does not affect P (yt | Xt).
However, a necessary definition must be explicitly made to capture whether
the new concept directly undermines or merely extends the observed classi-
fication problem. Although introducing a new P (Xt) or new classification
labels may theoretically induce a change in P (yt | Xt), our distinction fo-
cuses on whether the classification rules for the input space observed so far
remain unchanged. In this work, we refer to a virtual drift as a change in
P (Xt) that exposes the model to a new input space, potentially a previously
unseen subspace or an extension of an existing one. The crucial aspect is
that it preserves the decision boundary associated with all instances in the
previously observed input space. This means that all past instances retain
their original classification after the drift. Such a drift may even introduce
new labels, as long as it does not alter the classification of earlier instances.
Virtual drift requires the model to update its representation to generalize
in new regions of the input space, without contradicting previously acquired
knowledge. Conversely, we consider a real drift as a drift that changes the
decision boundary associated with the input distribution observed in earlier
concepts. In this case, the same instance may be classified differently before
and after the drift. A real drift, therefore, modifies the relationship between
features and target outputs, effectively changing the nature of the problem
and invalidating past knowledge. In some cases, virtual and real drift may
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occur simultaneously, introducing both additional information in a new fea-
ture space and a transformation of the underlying problem associated with
a feature subspace encountered in earlier concepts.

Notably, virtual drifts are common, though not exclusive, in artificial
streaming settings. While these settings do not involve data generated in
real time, shifts in the input distribution P (Xt) can still occur due to the
order in which data is accessed or processed. For instance, large datasets read
sequentially in batches may exhibit internal structure that leads to gradual
distributional changes, even if the underlying task remains the same [15].

Virtual drifts are often treated superficially in the existing literature. The
nuances and implications of virtual drift have received relatively little atten-
tion. This work provides, for the first time, a more detailed analysis of virtual
drift. We propose a categorization that distinguishes between different types
of virtual drift, depending on how the input distribution changes and how
those changes affect model performance. This finer-grained perspective al-
lows for a better understanding of the learning dynamics involved and opens
the door to a better understanding of SML and CL settings. fig. 2 shows our
categorization of concept drifts. For simplicity, we consider the case when
the drift does not introduce new classes, but the problem is always defined on
the same label set during the whole data stream. The red line represents the
theoretical decision boundary of the problem, which the model is expected
to learn. Note that this boundary is not known a priori. The model must
infer it from the observed data. fig. 2a represents the original distribution
and fig. 2b depicts a real drift, which changes the boundary on the previously
observed feature subspace. The remaining categories are described below.

A change in the input distribution P (Xt) can, in some cases, reflect a
shift toward a specific region of the feature space that was already present
during the previous concept, though only sparsely represented. We refer to
this scenario as zoom-in virtual drift (fig. 2c). In such cases, the model
trained on the earlier concept may underperform because it learned only a
rough approximation of the decision boundary within that region, due to
limited exposure to data points from it. After the drift, the input distri-
bution becomes concentrated in this previously underrepresented subspace,
revealing that the earlier model fails to accurately represent the true decision
boundary there. As a result, the model must be updated, even if the actual
underlying function has not changed.

Another notable case of virtual drift occurs when the input distribution
P (Xt) shifts to include a completely new region of the feature space that was
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(a) Before concept drift. (b) Real drift.

(c) Zoom-in virtual drift. (d) Pure expansionary virtual drift.

(e) Expansionary virtual drift without real
drift.

(f) Expansionary virtual drift with real
drift.

Figure 2: Illustrations of various concept drift types. The red line represents the theoretical
decision boundary of the problem that the model must fit. 2b depicts a real drift where
the decision boundary shifts. 2c represents a zoom-in virtual drift that concentrates on a
subset of the initial feature space. 2d shows a pure expansionary virtual drift introducing
a new, previously unseen feature subspace. 2e displays a drift involving both familiar and
new subspaces without altering the original decision boundary. Finally, 2f illustrates a
combination of virtual and real drift, resulting in changes to the decision boundary within
the previously known subspace.
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not previously observed. We define this as expansionary virtual drift. In
such scenarios, the existing model is unlikely to perform well, as it has no
prior experience with data from this newly introduced subspace. Expansion-
ary virtual drift can be pure (fig. 2d), where the new concept generates data
solely in the novel subspace. Alternatively, the new concept may include
data from both the previously seen and newly introduced subspaces. In this
mixed case, the new concept may also alter the decision boundary within
a portion of the original feature space, resulting in the coexistence of both
virtual and real drift (fig. 2f).

Along with the type of change, severity is an important marker for quan-
tifying how the concept has changed with respect to the previous one [19, 11,
20]. Formally, severity measures the discrepancy between the joint distribu-
tions P (Xt, yt) of features and labels before and after the drift. Associated
with the severity, the influence zone of the drift indicates whether the
change affects a limited region or the entire feature space [19, 11]. In the
case of real drifts, analyzing the influence zone can help understand what
has changed and must be relearned. A low-severity drift, or mild drift, will
probably be associated with a limited influence zone, thus requiring updat-
ing the learned decision boundary with respect to a narrow region of the
input space. Conversely, severe real drifts may change the decision bound-
ary associated with a significant region of the input space, thus demanding
substantial relearning and forgetting of past knowledge.

Additionally, concept drifts vary in their speed of occurrence [14, 11].
Abrupt drifts happen suddenly, causing immediate shifts in the data distri-
bution. Gradual drifts involve a slow transition with overlap between old
and new concepts, whereas incremental drifts proceed through intermediate
stages of gradual change. Finally, recurring drifts occur when previously seen
concepts reappear, requiring the model to efficiently recall past knowledge.

3. Streaming Machine Learning

SML [1] is usually concerned with natural streams, often involving real-
time analytics where data is continuously collected over time. In this situa-
tion, the emphasis is on continuously training a model and quickly adapting
to changes as new data points arrive. These scenarios often require several
strict constraints. Each data point is processed only once, as only a single
pass over the stream is permitted. To maintain responsiveness, the compu-
tational time required to process each instance must be minimal. Similarly,
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memory usage is constrained and should grow at most sublinearly with re-
spect to the total length of the data stream. Moreover, the model is expected
to be available for prediction at any point during the stream.

The primary objective of an SML system is to promptly detect and adapt
to concept drifts (both virtual and real). Such systems focus exclusively
on the current data distribution and the active concept, aiming to provide
accurate predictions under present conditions. The main challenge lies in
minimizing the adaptation time following a drift, as the model’s outputs
during this period are typically unreliable. Consequently, knowledge from
past concepts is often discarded once a drift occurs and is no longer used to
support future predictions.

SML Setting and Evaluation. A data stream is defined by SML literature as
an ordered and unbounded sequence of data points S = d1, d2, ..., dt, dt+1, ...,
where t is the timestamp. As already mentioned in Section 2, in the clas-
sification problem, each data point dt is represented by a feature vector Xt

and a label yt. SML assumes that, at timestamp t, the model receives the
feature vector Xt and must predict the label ŷt. Before receiving the new
feature vector Xt+1, the real label yt is given, and the model can update its
performance score using the pair (Xt, yt) and learn from it. This paradigm is
referred to as prequential evaluation or test-then-train evaluation [21, 22].

Drift Detectors. The design of drift detectors has attracted substantial in-
terest within the SML community. Gama et al. [11] propose a taxonomy
of the main approaches, broadly distinguishing three families. Error rate-
based methods, such as ADWIN [23], the Early Drift Detection Method [24],
EWMA [25], and EWMA for Concept Drift Detection [26], track the on-
line classification errors of base learners to identify noteworthy deviations.
These techniques are particularly suited to real and contradictory drifts,
where changes in classification rules lead to performance degradation. Data
distribution-based approaches assess discrepancies between historical and in-
coming data, making them appropriate for detecting input or virtual drift.
Notable examples include Concept Drift via Competence Models (CM) [27],
as well as techniques relying on information-theoretic measures [28] and sta-
tistical bounds on data streams [29]. Multiple hypothesis testing strategies
employ sets of statistical tests to capture drifts, as exemplified by Just-in-
Time (JIT) adaptive classifiers [30], hierarchical three-layer schemes [31], and
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lightweight detection ensembles [32]. Selecting an appropriate drift detector
is therefore a key challenge in the streaming context.

SML Algorithms. SML classification algorithms can generally be categorized
into five main methodological families, each adopting distinct mechanisms to
handle the constraints of data streams [33]. They usually start from offline
machine learning approaches and produce online and streaming versions able
to learn continuously from an unbounded data stream and adapt to changes.

Frequency-based approaches estimate posterior class probabilities by in-
crementally collecting statistics on the frequency of features. These meth-
ods assume conditional independence among attributes given the class label
and typically employ Bayes’ theorem to perform predictions. A canonical
example is the Näıve Bayes (NB) classifier [34], including several revised
versions designed to improve its performance in streaming contexts, like
Sketch-Based NB [35], Ageing-Based Multinomial NB [36], and Incremen-
tal Weighted NB [37].

Neighborhood-based methods, such as variants of the k-Nearest Neigh-
bors (KNN) algorithm, base their predictions on proximity in the feature
space. To make this computationally feasible in a streaming setting, they
maintain a sliding window of recent samples rather than storing the entire
history. Notable examples are KNN with Self Adjusting Memory [38] and
Efficient KNN Graph Construction [39].

Tree-based strategies adapt classic decision tree algorithms for incremen-
tal learning. These methods typically employ the Hoeffding bound [40] to
select split attributes with high statistical confidence from streaming data.
Early implementations [41] do not handle concept drifts effectively, whereas
later extensions such as the Hoeffding Adaptive Tree (HAT) [42] incorpo-
rate change detection mechanisms like ADWIN at each node to dynamically
adjust the tree structure.

Ensemble-based classification represents another prominent category. These
models combine the predictions of multiple base learners, often trained on
resampled subsets of the data [43, 44, 45]. One of the most well-known
solutions is the streaming version of Random Forest called Adaptive Ran-
dom Forests (ARF) [46]. By introducing diversity among learners, ensemble
techniques aim to improve generalization performance [47].

Neural network-based approaches have started to receive increasing atten-
tion due to their capacity for high-level abstraction. However, their applica-
tion in streaming scenarios is still poorly investigated since they present chal-
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lenges related to real-time learning, memory efficiency, and parameter tun-
ing. Notable examples are Continuously Adaptive Neural Networks for Data
Streams [48], Autonoumous Deep Learning [49], Incremental LSTM [50],
Continuous LSTM [51, 52].

SML Libraries. The landscape of SML libraries has evolved from tradition-
ally Java-centered ecosystems toward increasingly Python-oriented solutions,
reflecting the changing needs of both researchers and practitioners. MOA
(Massive Online Analysis)1 [1] remains the reference library for SML in Java.
Building on the WEKA project, MOA provides a mature and comprehensive
framework with a wide range of algorithms for online classification, cluster-
ing, and outlier detection, as well as standardized evaluation protocols that
ensure experimental rigor and reproducibility.

In the Python ecosystem, River2 [53] initially emerged as the main refer-
ence library for incremental learning on data streams, following the merger
of Creme and scikit-multiflow. River adopts a native streaming paradigm in
which data are processed one instance at a time and emphasizes flexibility
through lightweight, dictionary-based data structures that support evolving
feature spaces.

CapyMOA3 [54] bridges these two ecosystems by exposing MOA’s robust
Java-based algorithms through a Python interface. By directly leveraging
MOA’s highly optimized implementations, CapyMOA achieves substantially
higher efficiency than fully Python-native libraries such as River, particu-
larly in large-scale or high-throughput scenarios. Combined with seamless
integration into the Python machine learning ecosystem (e.g., PyTorch and
scikit-learn) and support for advanced settings such as complex concept drift
simulation, semi-supervised learning, and online continual learning, Capy-
MOA is emerging as a strong candidate reference library for SML in Python.

4. Continual Learning

Similar to SML, CL also studies data streams subject to concept drift.
Unlike SML, CL focuses more on knowledge retention rather than quick
adaptation. Historically, this is due to the first empirical observation of

1https://moa.cms.waikato.ac.nz/
2https://riverml.xyz/dev/
3https://capymoa.org/
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the catastrophic forgetting phenomenon in artificial neural networks [55, 56].
Forgetting is exacerbated on data streams with sudden, virtual drifts, where
new concepts replace previous ones [57]. Given the large degree of plasticity
in artificial neural networks trained with backpropagation and gradient de-
scent, whenever a concept is not observed for a sustained period, it is quickly
forgotten to learn new concepts.
Since forgetting is more crucial in the presence of virtual drifts, CL origi-
nally started by focusing on data streams where concepts never overlap, and
come one after the other [58]. This aligns well with the artificial stream
perspective, where a huge amount of data is scanned sequentially and, when
observing new distributions (due to the rise of virtual drifts), one aims to
learn it without forgetting what has been learn in the past. This allowed
researchers to design ad-hoc strategies to mitigate forgetting [57, 59].
The class-incremental scenario is one of the first and most studied CL scenar-
ios [58]. The learning model, usually an artificial neural network, is required
to i) solve a classification task where ii) classes are presented sequentially one
after the other, and iii) once a class disappears after a drift, it never occurs
again (no recurring drifts). Class-incremental scenarios essentially partition
a given data stream into subsets with non-overlapping classes.
Class-incremental scenarios can be easily derived from any classification dataset.
For example, one can take the MNIST dataset composed of images of digits,
and build a class-incremental scenario by considering only pairs of digits at
once. For instance, the model is first trained on all 0 and 1 digits (the first
“task”), then on all 2 and 3 digits, and so on up until all 8 and 9 digits. At
any point during training, the network should be able to correctly classify all
digits seen up to that point. However, due to forgetting, a simple fine-tuning
of the model leads to almost zero accuracy on previous digits, as the model
only predicts the most recent digit pair.
Sometimes, a class-incremental scenario also provides task labels during in-
ference, to help the model understand which task the data comes from. This
scenario allows building modular architectures with task-specific components.
It is therefore called task-incremental learning [60].
If class-incremental is the most challenging scenario for forgetting, it is by
no means the only CL scenario. One can easily introduce repetitions of pre-
vious concepts (i.e., classes) in the data stream. Alternatively, one can only
introduce new examples of existing classes. This scenario is usually called
domain-incremental [60]. Continuing with our example based on MNIST, a
domain-incremental scenario might require the network to classify digits as
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either even or odd. If the data stream presents examples of two classes at a
time, the model has to continuously adjust its idea of what an even or odd
digit is. This scenario is usually associated with a lower amount of forgetting,
as it does not introduce completely new concepts.
Notably, all the aforementioned scenarios present virtual drift, since each
new experience introduces a new input distribution that was not observed
during the past. Particularly, the situation presented in Figures 2c and 2d
explicitly maps the domain-incremental setting. The class-incremental set-
ting, in addition to introducing a new input distribution, also complicates
the decision boundary by adding new classes in the new input distributions.
CL rarely studies streams with real drifts. Such streams would require not
only to forget outdated information, but also to selectively forget knowledge,
a challenging endeavour with deep neural networks, where representations
are usually entangled.

Given the type of scenarios and data streams faced by a CL model, re-
searchers derived different ideas on how to combat forgetting. While a com-
prehensive overview of CL approaches is beyond the scope of our work, we
summarize here some of the most important classes of approaches. This will
also be useful when introducing a motivating example for Streaming Contin-
ual Learning, later in Section 6.
As we have seen, a class-incremental scenario presents new concepts sequen-
tially without repetition of previous ones. This breaks the i.i.d. assumption,
which many machine learning approaches rely on. To better approximate
an i.i.d. distribution, replay strategies [61] keep a storage of previously seen
examples (e.g., K examples per class). At each training iteration, the model
receives the current examples from the stream and a sample from the replay
memory. Intuitively, replay mitigates forgetting as it restores knowledge from
previous concepts. However, CL requirements usually do not allow for storing
the entire data stream in memory, thus effectively limiting the replay mem-
ory size. Recent works explore settings with unlimited memory but limited
computational budget, as they model some real-world cases where storage
cost is often negligible.
Replay is by far the most popular CL approach for class-incremental scenar-
ios. Regularization approaches [62] are also among the most studied ones.
The idea is to penalize changes in the current model that would drive it away
from the optimum for previous concepts. This high-level idea is instantiated
differently depending on the context: i) each weight can bring an importance

13



value related to previous tasks and receive an update inversely proportional
to its importance; ii) the current model might be encouraged to approximate
its predictions on previous tasks through distillation, to remain functionally
similar to the previously reached optimum; iii) the update direction might
be constrained to remain (exactly or approximately) orthogonal to previous
update directions to mitigate interference. Other classes of CL approaches,
called architectural strategies, dynamically expand the model upon receiving
new data, usually leading to multi-module models with task-specific compo-
nents [63, 64]. Naturally, different CL approaches can be combined to take
the best of several possible options (hybrid approaches).

Evaluation in CL. Unlike SML, prequential evaluation is rarely used in CL.
The CL framework includes a stream S = (s1, s2, . . .) of a potentially infi-
nite amount of experiences (or tasks, or concepts). Each si provides a set of
examples, and drifts usually occur between any experiences. The model is
not subject to strong constraints on the allotted training time on each expe-
rience, and it can therefore be trained for multiple epochs until convergence.
At any point in time, the model is evaluated on a set of unseen examples
(the test set), which are held out from the data in each experience. When
training on si, the evaluation on the test set of si measures the generaliza-
tion performance of the model. Differently, when training on si, evaluating
on the test set of sj, j < i measures the ability of the model to retain pre-
vious knowledge. That is, the forgetting. More formally, let us consider the
supervised classification task (a similar reasoning applies to other tasks, like
regression). The evaluation metric is the prediction accuracy (percentage of

correctly classified examples). The metric ACC [65] is computed as
∑

i ai,N
N

,
where N is the total number of experiences encountered by the CL agent
and ai,j is the average accuracy on the test set of si after training on sj.
ACC measures the overall predictive performance of a CL agent on a set of
N experiences.
The Backward Transfer (BWT) [65] measures the knowledge retention. It
is therefore equal to negative forgetting (BWT = −F with F forgetting).
For a given experience si, its BWT is computed as ai,j − ai,i, j > i. The
first term measures the performance on experience i after training on the
(current) task j, while the second term measures the original performance
on experience i right after training on it (it is the reference value). A positive
value indicates that learning new experiences benefits the performance on si.
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On the contrary, a negative value denotes forgetting. When averaged over a
set of tasks, the forgetting metric is called Average Forgetting.
This short overview of evaluation in CL highlights how the model always has
access to a set of held-out examples from each experience, even though they
are only used for evaluation and never for training.

Online continual learning (OCL). As we have seen, CL does not impose strict
constraints on the allotted training time or on the number of examples the
model accesses at a time. We call the setup presented so far “batch CL”, to
highlight that each experience carries a large amount of examples, and the
model can be trained over multiple epochs until convergence. In contrast,
OCL [66] focuses on a scenario much more similar to SML. Data arrives one
“minibatch” at a time. In practice, this means that each experience carries
only a few examples. The model can be trained for a few iterations on the
same minibatch. However, this setup is much more restrictive than a multi-
epoch training on a large batch of data. OCL preserves the evaluation setup
where the model can be queried at any time on data belonging to previous
experiences. One popular evaluation metric in OCL requires computing the
predictive accuracy at any point, even after each iteration. The average of
these measurements over the entire stream is called the Average Anytime
Accuracy [67].
The CL scenarios presented before still apply. For example, the class-incremental
scenario can be easily repurposed to OCL by splitting each experience into
smaller experiences with only a few examples. As a result, OCL streams are
composed of more experiences than CL ones.
Even though some of the challenges of SML and CL meet in the OCL sce-
nario, the current literature is still dominated by the CL view: learning
models are usually deep artificial neural networks, mitigating forgetting re-
mains the main focus, and virtual drift is the most common type of drift.
However, OCL highlights the need for fast adaptation to new knowledge, as
new data points arrive quickly, and training cannot be performed over mul-
tiple epochs. In addition to these strict time constraints, OCL also obeys
the memory constraints of CL: no storage of the entire history of the data
stream is allowed. Replay is still used in OCL, by leveraging a memory buffer
of fixed-length. All these characteristics will be shared by the SCL framework.

Continual Reinforcement Learning. In Reinforcement Learning (RL), an agent
implements a continuous, reciprocal relationship with the environment it is
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Figure 3: An RL control loop: as a reaction to actions a(t) taken by the agent, it receives
observations o(t) and rewards r(t).

Figure 4: Virtual and real drift in Continual Reinforcement Learning (CRL). In this ex-
ample scenario, a robot is rewarded or punished when touching certain objects, depending
on form, color, and displayed symbol. Left: an object that should be touched, giving +10
reward. Middle: virtual drift, introducing a different object that should not be touched (or
else: +10 reward). Right: real drift, changing the reward previously obtained for touching
the object to punishment.

situated in: the agent continuously takes actions, which impact the environ-
ment and thus the observations and rewards obtained from it, see fig. 3. This
involves learning from non-stationary data distributions even when environ-
ments themselves can be considered stationary. This is mainly because the
assessment of different actions will evolve as learning progresses, leading to
different actions being taken in similar situations, and thus to different ob-
servations. As such, this would mainly represent virtual drift (observations
change, but not the optimality of actions in the same circumstances).

However, in Continual Reinforcement Learning (CRL), we consider envi-
ronments themselves to be non-stationary. This implies that, for the same
observation, different actions may be required for maximum reward at differ-
ent points in time, which corresponds to a real shift, or even a combination
of both (fig. 4).
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Figure 5: Summary of SML and CL, with some examples of popular state-of-the-art
approaches and popular libraries. We refer to existing reviews for an in-depth treatment
of either field.

5. Streaming Continual Learning

SCL emerges from the need to unify the complementary goals of SML
and CL (summarized in Figure 5) when operating on evolving data streams,
which may experience both real and virtual drifts. SML focuses on the
current concept and aims to perform well on the currently observed feature
subspace. SML does not address the issue of forgetting and makes no effort to
assess whether knowledge from previously observed subspaces remains valid.
Its main objective is to quickly adapt to new concepts, even at the cost of
losing prior information. Since both real and virtual drifts require model
updates, SML literature has often claimed that distinguishing between them
is of limited practical relevance [2, 12, 68, 13, 18].
Conversely, CL typically assumes that concept drifts are only virtual (often
expansionary), meaning that previously acquired knowledge remains valid.
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The goal in this case is to retain previously learned knowledge while incor-
porating new information.

This distinction is also reflected in the evaluation protocols used in each
field. SML usually adopts prequential evaluation (Section 3), assessing per-
formance only on the current concept. This fits natural streaming scenarios,
where data are generated in real time, and the focus is on immediate adapta-
tion. In contrast, CL evaluates performance across all previously encountered
concepts (Section 4), which is more suited to artificial streaming scenarios,
where the full problem cannot be observed at once. Instead, it is split into
subproblems (CL experiences), and the model is expected to remember past
knowledge while learning new tasks.

Blending these two views into a unified framework is at the core of SCL.
From this perspective, the model should maintain a general understanding of
the entire stream while actively relying only on knowledge that remains valid
for the current concept, or on reinterpreting prior knowledge in a way that
supports current learning. Any knowledge that is not immediately useful
should be preserved and made accessible for potential future reuse.

Crucially, as discussed in [8], the environment itself dictates which knowl-
edge should be retained or discarded. New data may introduce patterns
that either complement (virtual drifts) or replace existing ones (real drifts).
In some situations, prior knowledge becomes irrelevant and should be sup-
pressed to prevent interference. In others, it may still be valuable, either
because it partially overlaps with new concepts or because it is likely to re-
cur. Moreover, real drifts may not invalidate prior knowledge entirely: mild
drifts or those with limited influence zones might still leave large portions of
the input space unaffected.

Furthermore, in many real contexts, forgetting should not be seen solely as
a drawback but as a necessary strategy for managing limited resources. The
model should retain general, reusable knowledge while dynamically adapting
to changes in the environment. This implies a more selective and context-
aware form of forgetting, where information is not erased indiscriminately
but evaluated based on its relevance to the ongoing data stream.

SCL and Online CL. As we mentioned in Section 4, research in OCL already
took an important step in the SCL direction. Firstly, OCL considers data
streams where only a few examples are available at a time. Secondly, OCL
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incorporates anytime evaluation at a high frequency (up to every training
iteration). Thirdly, OCL shares the tight computational constraints of SCL.
However, the current direction of OCL research is still heavily oriented to-
wards the mitigation of catastrophic forgetting, where neural networks and
class-incremental learning scenarios are prominent. SCL aims at tackling
more general scenarios, with different types of drifts possibly appearing in
the data stream (e.g., real drifts). SCL offers the opportunity to build a
shared vocabulary, connecting (O)CL and SML researchers, expanding the
scope of their application domains, and leveraging existing works to design
hybrid approaches.

SCL approaches. SCL paradigms should exhibit five essential capabilities [8]:
(1) rapid adaptation to both real and virtual drifts, (2) autonomous detection
of concept drifts, (3) ability to learn effectively from single (or a few) data
points, (4) capacity to form hierarchical, structured representations, and (5)
selective retention of relevant knowledge to mitigate forgetting. Notably,
the ability to build hierarchical representations contributes directly to better
knowledge selection, as it enables the model to structure the knowledge and
identify which components could be reused or adapted.

In this context, SML methodologies could play an important role in mon-
itoring and detecting changes and quickly adapting to them, while learning
continuously from single data points. On the other side, CL and OCL are
explicitly meant to structure and organize latent representations using deep
learning models and apply strategies to mitigate forgetting.

Notably, Replay and regularization CL strategies may show limitations
in streaming settings characterized by real concept drifts. These approaches
typically attempt to retain and jointly optimize for all previously seen con-
cepts. However, when past and current concepts conflict (as is common
with real drifts), this simultaneous optimization can introduce incompatible
learning signals, ultimately preventing convergence.

In contrast, architectural strategies (another popular and varied set
of CL approaches) offer a more modular and scalable alternative. By struc-
turally decoupling the parameters associated with different concepts, these
methods can mitigate interference and allow for selective reuse of relevant
components. Such architectures enable the system to isolate, preserve, and
repurpose knowledge through mechanisms like dynamic module expansion
or masking mechanisms. This design allows the learner to focus adaptively
on the current concept while retaining access to past knowledge, aligning
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closely with the core principles of SCL, where adaptability and scalability
are crucial.

Regarding the evaluation procedure, one may apply both prequential eval-
uation to measure how the model is performing on the current concept and
classical CL evaluation to estimate how the model retains the past concepts.
Tracking how the model forgets over time provides valuable insight into the
effects of newly acquired knowledge. Even when a previously learned con-
cept loses its relevance, analyzing shifts in its accuracy can offer important
information. Ideally, the model should preserve high-level knowledge that is
common across concepts, as this can aid in solving current tasks [8].

Following this direction, we presented a proposal for an architecture that
can embody SCL solutions: fast and slow learners [8] and takes inspira-
tion from the Complementary Learning Systems (CLS) theory [69, 70]. The
CLS theory distinguishes between a fast-learning system for rapid adapta-
tion and a slow-learning system for stable, long-term consolidation. This
duality naturally maps onto the SCL paradigm, where a fast learner (SML)
quickly adapts to incoming data, while a slow learner (CL) retains generaliz-
able knowledge and mitigates forgetting. The interaction between the two is
bidirectional: the slow learner benefits from relevance signals and recurrence
detected by the fast learner, while the fast learner can exploit structured rep-
resentations built over time by the slow learner. This coordination enables
SCL to adapt rapidly to change while preserving useful knowledge across the
stream.

Datasets for SCL. As demonstrated by the quick rise of class-incremental
scenarios in CL, leveraging existing datasets and benchmarks is fundamental
to driving research and innovation in a field. SCL is no exception. We briefly
discuss existing datasets that can be quickly repurposed for experiments in
SCL. In particular, all the datasets listed below can be used within an SCL
stream, provided that the evaluation protocol used to optimize the learn-
ing models accounts for both quick adaptation and mitigation of forgetting
(e.g., by using prequential evaluation and the BWT metric). In general, any
dataset including a temporal dimension and shifts in the data distribution is
a suitable candidate for an SCL stream.

CLEAR [71] targets gradual drifts in the temporal evolution of visual
concepts. CLEAR can be used for semi-supervised learning, as it includes
labelled and unlabeled data adapted from the YFCC100M dataset [72]. In-
terestingly, SCL data streams from CLEAR can easily include real drifts.
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In fact, a given concept changes shapes and characteristics over time, thus
requiring updating the learned representations. Together with the introduc-
tion of new concepts over time, CLEAR can be readily used to create SCL
streams mixing real and virtual drifts.

Wild-Time [73] focuses on temporal distribution shifts. Wild-Time pro-
vides time stamps for each example, enabling models to build on previously
encountered patterns for quick adaptation. The benchmark includes five
different real-world datasets on a set of different domains, such as drug dis-
covery, patient prognosis, and news classification.
Similarly, CLAD [74] and KITTI [75] capture temporal drifts in vision-based
tasks (e.g., object detection). In particular, KITTI includes 6 hours of real-
world traffic recorded through various sensors.

CLOC [76] is a dataset of geolocalized, time-stamped images from vari-
ous locations around the world. The original paper uses CLOC in an OCL
setting, therefore being already compatible with SCL approaches.

EGO4D [77] is a large-scale dataset of daily-life activities from egocentric
videos of several users. It is therefore a suitable candidate for personalization
tasks where the temporal aspect is key.

Natural language processing is another crucial test-bed for SCL. Like
EGO4D, Firehose [78] allows for benchmarking personalization approaches,
as it provides tweets from multiple users over time.

TemporalWiki [79] is a dataset of time-stamped Wikipedia and Wikidata
pages, allowing for simulation of a data stream where knowledge is continu-
ously updated as some information becomes outdated while new information
is included.

Recently, [80] introduced a benchmark for land use classification from
satellite images specifically designed with SCL in mind. Interestingly, pre-
dictive models deployed directly on satellites do not have access to large
computational resources, making this use case fit for several SCL applica-
tions.

Streaming/Continual Reinforcement Learning. When using the tools devel-
oped for CL in CRL, several conceptual problems immediately arise. First
of all, CL techniques are often intrinsically tied to the notion of tasks, that
is, similarly to the definition of concepts, periods of stationary data statistics
whose onsets are known. This idea, when transferred to RL, would imply pe-
riods of stationary environment statistics. Thus, drift would not occur during
tasks, but only at task onsets. Such a notion is already quite artificial in RL,
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especially the a priori knowledge about task onsets, and totally incompatible
with streaming learning. Task onsets, if they were abrupt, could be detected
by dedicated methods, especially for real drifts, where the well-known TD
error (the difference between the expected and obtained reward for an action
that was executed) should increase. Gradual drift could be detected as well,
but this would invalidate the entire concept of a task itself.

The notion of a task is often very useful. For example, replay methods
in CL [9] partition the memory buffer into fixed-size slots. Each slot gathers
examples from the same class (for supervised classification problems) or from
the same task (if a task identifier is available). Similarly, replay methods in
CRL can exploit information about task labels to partition the replay buffer.
However, replay can sometimes be deleterious. In particular, when dealing
with an SCL stream where real drifts occur, performing replay would actu-
ally preserve the information that the real drifts has now made obsolete.

In the absence of a clear separation between tasks in the stream, replay
can still work considering boundary-free approaches, like the works in [81,
82, 83, 84].

6. A motivating example for SCL

In this Section, we present a simple example to motivate the need for
SCL and to empirically prove that SML and CL struggle to find a joint
solution to the challenges of quickly adapting to concept drifts while avoiding
forgetting. The data and code are available here for reproducibility (in the
case of acceptance, they will be uploaded to a public repository on GitHub).4

6.1. Experimental setting

We compare SML and OCL methodologies in two different scenarios by
leveraging the MNIST dataset to build our data streams.

The first scenario (virtual drift scenario) involves only virtual abrupt
drifts. Each experience contains images from two digits (one odd digit and
one even digit per experience). The learning model is required to classify
each digit as odd or even (binary classification). After each experience, a

4https://drive.google.com/drive/folders/1nrotkzWlrUtYuTtyE34LD0QF9H2sArCV?

usp=sharing
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new couple of digits is introduced. This drift alters the data distribution
P (Xt).
To better understand the nature of virtual drifts, consider a simplified rep-
resentation of each digit using a 7-dimensional binary input space, similar
to the structure of a seven-segment digital display (fig. 6). Each dimension
corresponds to one segment that can be either on (1) or off (0). For example,
the digit 1 activates only two segments, whereas 7 adds the top horizon-
tal segment x7. The digit 0 activates all segments except the central one
(x7), while 8 turns on all seven. In this representation, each digit occupies
a distinct region of the input space. Although some digits share identical
values on a subset of features. For instance, even if 1 and 7 differ only in
x1, they still occupy different regions of the input space. In other words,
when projected onto the subset of the features defined by x2, . . . , x7, their
representations are indistinguishable, but they lie on different hyperplanes
along x1 (e.g., x1 = 0 for 1, x1 = 1 for 7). Even when digits are similar or
lie close in the input space, they are still defined by different combinations
of active dimensions and thus reside in separate subregions.

This toy example is not meant to faithfully reproduce the structure of
real MNIST images. Instead, it provides an intuitive explanation of how
virtual drifts operate. New experiences introduce inputs that occupy previ-
ously unseen regions of the input space, while the task definition (odd vs.
even classification) remains unchanged. Thus, the labels assigned to the pre-
viously observed digits do not change over time. Each drift simply adds
new types of instances that extend the problem without contradicting what
has been observed so far. The model must learn to extend the previously
learned classification rules to previously unexplored regions while retaining
the knowledge it has acquired. This example simplifies the much more com-
plex pixel-based input space of MNIST, which operates in grayscale and
high dimensionality. In the actual MNIST setting, digits are represented in
a much higher-dimensional grayscale pixel space, and although the geometry
is far more complex, images belonging to the same digit class still tend to
cluster in distinct regions. The simplified 7-segment example is used purely
for conceptual illustration and is not used in the experiments.

The second scenario (real drift scenario) involves real abrupt drifts. It
consists of five distinct binary classification tasks: (i) even vs. odd, (ii) > 4
vs. ≤ 4, (iii) multiple of three vs. not multiple of three, (iv) prime number
(including one) vs. non-prime number, (v) ∈ [2, 5] vs. /∈ [2, 5].
Each experience uses the same input distribution, as all examples from all
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Figure 6: Illustration of digits 1, 7, 0, and 8 using a seven-segment display representation.
Each digit is encoded as a binary vector over seven dimensions (x1, . . . , x7), where each xi

corresponds to one segment (on = 1, off = 0). Although some digits share subsets of active
segments (e.g., 1 and 7), their full encodings place them in distinct regions of the input
space. This simplified scenario reflects the nature of virtual drifts in our experiments,
where new digits introduce non-overlapping patterns in the input distribution. While
MNIST uses grayscale pixel values in a high-dimensional space, the same principle holds:
each digit activates a different subset of features, occupying a unique region in the space.

digits are present. However, each experience asks the model to solve a sep-
arate task, thus defining a different classification problem. In this case, the
distribution P (Xt) remains fixed, while P (yt|Xt) changes, since the same
digit may be assigned different labels depending on the binary task. Addi-
tionally, some tasks may share class labels for a subset of the digits.

Our research hypotheses are as follows. H1 states that mitigating
forgetting slows down the adaptation to new concepts. H2 states that SML
models are not stable and forget the previous concepts after both real and
virtual drifts. H3 states that CL strategies struggle to avoid forgetting after
real drifts. H4 states that CL strategies struggle to efficiently learn the new
concept after real drifts.

To verify these hypotheses, aligning with our SCL perspective, we apply
both prequential and CL evaluations. Since some classification problems of
the real drift scenarios are imbalanced, we consider Cohen’s Kappa Score [85].
Cohen’s Kappa is a metric that measures the agreement between predicted
and true labels while correcting for the agreement that could occur by chance.
Unlike plain accuracy, it provides a more reliable indication of model per-
formance, especially in imbalanced settings. A value of 1 indicates perfect
agreement, meaning every prediction is correct; a value of 0 suggests that
the model’s predictions are no better than random guessing; negative values
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imply systematic disagreement. In general, values between 0.6 and 0.8 reflect
substantial agreement, and those above 0.8 are interpreted as near-perfect,
indicating that the model is consistently making accurate predictions beyond
chance.

As explained in Section 3, the prequential evaluation updates the score
incrementally whenever a new digit dt = (Xt, yt) is generated. Xt is the
feature vector representing the image, and yt is the real binary label. The
model receives the feature vector Xt and predicts the associated label ŷt.
Then, the score is updated considering yt and ŷt. The prequential evaluation
returns an updated score after each data point using a rolling window of 1k
data points. Thus, at timestamp t, it considers the data points from dt−999

to dt. After a concept drift, it resets the window to focus on the adaptation
to the new concept, avoiding considering the previous concept’s last data
points. For the first 1k data points following a drift, it only considers the
predictions of the data points from the drift onwards. It measures how the
model is performing on the recent data points.

During prequential evaluation, a checkpoint of each model is stored after
each drift, to be used for the CL evaluation. When the prequential evaluation
ends, the CL evaluation computes the average Cohen’s Kappa (Kavg) and
backward transfer (BWT ) metrics using a test set for each concept, which is
held out during training (see Section 4). For both metrics, we consider the
complete evolution over the stream by averaging across all drifts. Formally,
after the concept i ends, the two metrics are computed as in Equations 1 and
2, where Ki,j represents the Cohen’s Kappa score achieved by the checkpoint
stored after the end of concept i and tested on the test set of concept j.

Kavg =

∑N
i=1

∑i
j=1Ki,j

N ·(N+1)
2

, (1)

BWT =

∑N
i=2

∑i−1
j=1(Ki,j −Kj,j)
N ·(N−1)

2

. (2)

To investigate the effects of CL in streaming scenarios, we evaluate a
set of representative replay and regularization strategies. As highlighted in
Section 5, these methods are widely used but may struggle with real concept
drifts, where conflicting information from past and current tasks can hinder
convergence. We consider the following SML models and CL strategies.
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• ARF [46] (see Section 3) is one of the most well-known models in SML.
It consists of a streaming version of Random Forest and includes in-
ternal drift detectors to autonomously adapt to changes in the data
stream, without requiring external drift signals.

• Experience Replay (ER) [61] is a widely used strategy in CL that miti-
gates forgetting by storing a small subset of past examples in a memory
buffer and periodically revisiting them during training, allowing the
model to reinforce previous knowledge while learning new tasks.

• AGEM [86] prevents forgetting by projecting the current gradient up-
date onto the closest direction that does not increase the loss on a small
memory of past examples. Instead of retraining directly on stored data,
it uses these samples to constrain updates, ensuring that new learning
does not interfere with previously acquired knowledge.

• Naive classifier: it is the base learning model without any CL strategy.
The model is fine-tuned over the data stream continuously.

The methodologies’ choice is directly tied to the nature of real drifts and
to the hypotheses formulated in this work. Replay and regularization CL
strategies (represented by ER and AGEM) are included because they jointly
optimize past and current tasks. While this approach is effective in virtual
drift scenarios, it is fundamentally misaligned with real drifts, where past and
current concepts may be incompatible. Under these conditions, the gradi-
ent signals introduced by replay or regularization can become contradictory,
preventing convergence and slowing down the adaptation process. For this
reason, ER and AGEM provide ideal representatives to test whether these
mechanisms fail under real drift, as predicted by H1, H3, and H4.

The Naive classifier is included as a fully plastic model without any strat-
egy to avoid forgetting. When compared to CL strategies, it represents a
lower-bound baseline for stability evaluation and an upper-bound baseline
for plasticity evaluation. In contrast, ARF is selected as a representative of
SML approaches due to its well-established ensemble mechanism and robust-
ness in streaming settings.

CL learning strategies are trained using the OCL approach with mini-
batches containing ten images. The concept boundaries are given to the
model. During each step of the prequential evaluation, ARF performs in-
ference on a single data point and is trained on the same data point. OCL
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methods follow the same protocol, but with minibatches of 10 examples at a
time. No method performs multiple passes on the same data points. To per-
form a fair comparison between decision tree-based and deep learning-based
models, images are represented using a common feature space of 30 compo-
nents given by a UMAP model [87]. The UMAP model is trained offline on
the whole MNIST dataset.

OCL strategies are implemented using the Avalanche library[88]5 with
a base learner consisting of a neural network with one hidden layer and
size 512. All the models use a Stochastic Gradient Descent optimizer with
learning rate 0.001 and momentum 0.9.6 ARF is implemented using the
River library with default parameters7. ER uses a replay buffer of ten data
points for each mini-batch, sampled from a memory of 500 images.

6.2. Results

For the virtual drift scenario, we average results across ten runs with
different orders and pairs of digits. For the real drift scenario, we follow the
same protocol by changing the order of the classification tasks.

Results are shown in fig. 7 (prequential evaluation) and fig. 8 (CL eval-
uation). We recall that the main difference lies in the fact that the CL
evaluation tests the models after each drift on the test sets of the concepts
encountered so far. Table 1 shows the results for Kavg and BWT metrics.

When analyzing the virtual drift scenario, the prequential evaluation
(fig. 7a) reveals that the decision tree model performs worse than the neural
network. ARF, in fact, generally achieves lower prequential accuracy than
the Naive classifier. ARF can adapt more quickly to the very first data points
following a drift, whereas the Naive classifier performs very poor. However,
it is important to note that the Naive classifier is trained incrementally on
mini-batches, which introduces a delay in adapting to new data. Both ER
and AGEM are outperformed by the Naive classifier, indicating that applying
specific CL strategies can slightly hinder the learning of the current concept.
This outcome is further clarified by the CL evaluation (fig. 8a and Table 1).
ER exhibits the best performance in terms of mitigating forgetting, high-
lighting its stability. However, this stability comes at the expense of reduced

5https://avalanche.continualai.org/
6https://docs.pytorch.org/docs/stable/generated/torch.optim.SGD.html
7https://riverml.xyz/0.11.1/api/ensemble/AdaptiveRandomForestClassifier/
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(a) Virtual drift scenario

(b) Real drift scenario

Figure 7: Prequential evaluation results averaged over the ten executions (considering
Cohen’s Kappa score). In the virtual drift scenario (8a), the Naive classifier performs well.
ER and AGEM obtain slightly lower performance, since they balance between plasticity
and stability. In the real drift scenarios (8b), the Naive classifier and AGEM perform
equally, since the AGEM strategy has no impact. ER has strong difficulties to learn the
new concept since it tries to mitigate forgetting. ARF is plastic in both scenarios.

plasticity, in line with the well-known stability-plasticity trade-off [3]. In
contrast, Naive and ARF show strong online performance but suffer from
catastrophic forgetting of previous concepts, since they do not apply specific
strategies to mitigate it. AGEM, while slightly less stable than ER, achieves
better online performance and approaches the Naive classifier.

Results are significantly different in the real drift scenario. As shown
in the prequential evaluation (fig. 7b), decision trees outperform neural net-
works. AGEM performs on par with the Naive classifier, while ER struggles
to learn the current concept effectively. This outcome is further explained
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(a) Virtual drift scenario (b) Real drift scenario

Figure 8: CL learning evaluation. After each drift, the models are tested over the current
and all the previous test sets, and the average Cohen’s Kappa score is computed. Finally,
results are averaged over the ten executions. On the virtual drift scenario (8a), ER and
AGEM are stable, while ARF and the Naive classifier catastrophically forget previous
concepts. On the virtual drift scenario (8b), all the models cannot avoid forgetting. This
is due to the fact that the concepts are in contradiction, and the model cannot solve both
of them jointly.

by the CL evaluation results (fig. 8b and Table 1). AGEM and the Naive
classifier achieve similarly poor scores, indicating that AGEM fails to provide
any meaningful improvement and behaves essentially like a Naive classifier.
ARF once again catastrophically forgets all previously learned concepts. ER
performs slightly better in terms of retaining past knowledge, but still fails
to prevent forgetting effectively. The underlying issue lies in ER’s training
approach: it mixes the current mini-batch with replayed examples from past
concepts. However, in the presence of real drifts, these past examples are
associated with previous decision boundaries that contradict the new target
concept. As a result, the model receives contradictory training signals, which
not only prevent it from preserving old knowledge but also hinder its ability
to learn the new concept. Consequently, training fails to converge, and ER
is unable to adapt properly in this setting.

To summarize, all the research hypotheses are verified. H1: the Naive
classifier is more plastic than CL strategies. H2: ARF exhibits a poor CL
performance in both scenarios. H3: in the real drift scenario, AGEM and
ER cannot avoid forgetting since previous concepts are in contradiction with
the current ones, and the model cannot solve all of them jointly. H4: in
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Virtual drift scenario Real drift scenario
Kavg BWT Kavg BWT

AGEM 0.89 ± 0.06 -0.13 ± 0.10 0.24 ± 0.01 -0.99 ± 0.05
ARF 0.40 ± 0.09 -0.83 ± 0.14 0.24 ± 0.00 -1.06 ± 0.00
ER 0.94 ± 0.02 -0.04 ± 0.02 0.27 ± 0.02 -0.85 ± 0.08

Naive 0.46 ± 0.09 -0.77 ± 0.14 0.24 ± 0.01 -1.00 ± 0.04

Table 1: Mean and standard deviation of the CL metrics over the ten executions using
Cohen’s Kappa score.

the real drift scenario, AGEM is not effective and performs on par with the
Naive classifier. Similarly, ER struggles with learning the current concept.

7. Conclusion and Future Directions

We discussed the Streaming Continual Learning scenario, where a model
is required to quickly adapt to new information while retaining previous
knowledge. We motivated the need for SCL with an empirical evaluation
of existing SML and CL strategies, briefly showing how the two objectives
are currently not met by any of the approaches alone (Section 6). While
CL focuses on knowledge consolidation to avoid forgetting, SML focuses on
rapid adaptation. This also results in different evaluation protocols, hiding
the opportunities for a positive exchange of ideas and solutions.
We do not believe that SCL will replace SML or CL. Rather, we strive for an
integration of the two approaches. Throughout this paper, we claimed that
such opportunities are already available, and that they are currently being
neglected.
While SCL ideas are gaining traction along several directions (e.g., online
continual learning, SML with deep representation learning), a unified ap-
proach is still missing. Bringing together the SML and CL communities will
speed up the process.

We foresee potential applications of SCL in areas where i) temporal cor-
relations play a role and ii) virtual and real drift can occur at any time.

The presence of temporal dependencies influences many real-world scenar-
ios, including the Internet of Things, robotics, object tracking, video surveil-
lance, and satellite imagery analysis [9]. Despite its crucial relevance [52],
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this problem is usually ignored by both research areas. As highlighted by
M5 challenge [89], combining statistical and deep learning approaches can be
effective in modelling temporal patterns. Moving towards an SCL perspec-
tive, integrating SML and CL methodologies could provide a viable solution.
Since Recurrent Neural Networks models are widely applied in this case, they
can also be used online in an SML way to learn continuously and handle tem-
poral dependencies. Furthermore, architectural CL strategies may be applied
on top of them to avoid forgetting and exploit transfer learning. Continu-
ous Progressive Neural Networks [51] represent one of the first pioneering
solutions that apply this rationale.

One example satisfying both temporal dependence and the presence of
real and virtual drifts is the case of personalization. When a predictive
model needs to be tailored to each user’s needs, it is important to consider
how the user’s preferences evolve over time, what is relevant, and what is
instead becoming outdated.

Equipped with the intuitions and the results from Section 6, SCL ap-
proaches would enable rapid adaptation to novel needs (virtual drifts), while
at the same time preventing forgetting of old preferences. Selective forgetting
(e.g., via model editing or similar techniques) would still be required in the
presence of real drift, where old preferences become outdated. As we have
seen, carefully balancing these two dimensions is still a challenge for existing
approaches, and one of the most important and pressing motivations behind
the study of SCL scenarios.
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[24] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
R. Morales-Bueno, Early drift detection method, in: Fourth interna-
tional workshop on knowledge discovery from data streams, Vol. 6, 2006,
pp. 77–86.

[25] H. Raza, G. Prasad, Y. Li, Ewma model based shift-detection methods
for detecting covariate shifts in non-stationary environments, Pattern
Recognition 48 (3) (2015) 659–669.

[26] G. J. Ross, N. M. Adams, D. K. Tasoulis, D. J. Hand, Exponentially
weighted moving average charts for detecting concept drift, Pattern
recognition letters 33 (2) (2012) 191–198.

[27] N. Lu, G. Zhang, J. Lu, Concept drift detection via competence models,
Artificial Intelligence 209 (2014) 11–28.

[28] T. Dasu, S. Krishnan, S. Venkatasubramanian, K. Yi, An information-
theoretic approach to detecting changes in multi-dimensional data
streams, in: Proc. Symp. on the Interface of Statistics, Computing Sci-
ence, and Applications, Vol. 12, Citeseer, 2006, pp. 1–22.

[29] D. Kifer, S. Ben-David, J. Gehrke, Detecting change in data streams,
in: VLDB, Vol. 4, Toronto, Canada, 2004, pp. 180–191.

[30] C. Alippi, M. Roveri, Just-in-time adaptive classifiers—part i: Detecting
nonstationary changes, IEEE Transactions on Neural Networks 19 (7)
(2008) 1145–1153.

[31] Y. Zhang, G. Chu, P. Li, X. Hu, X. Wu, Three-layer concept drifting
detection in text data streams, Neurocomputing 260 (2017) 393–403.

[32] B. I. F. Maciel, S. G. T. C. Santos, R. S. M. Barros, A lightweight con-
cept drift detection ensemble, in: 2015 IEEE 27th International Con-
ference on Tools with Artificial Intelligence (ICTAI), IEEE, 2015, pp.
1061–1068.

34



[33] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, S. Maniu, Data stream anal-
ysis: Foundations, major tasks and tools, WIREs Data Mining Knowl.
Discov. 11 (3) (2021).

[34] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers,
Mach. Learn. 29 (2-3) (1997) 131–163.

[35] M. Bahri, S. Maniu, A. Bifet, A sketch-based naive bayes algorithms for
evolving data streams, in: IEEE BigData, IEEE, 2018, pp. 604–613.

[36] S. Wagner, M. Zimmermann, E. Ntoutsi, M. Spiliopoulou, Ageing-based
multinomial naive bayes classifiers over opinionated data streams, in:
Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, Springer, 2015, pp. 401–416.

[37] C. Salperwyck, V. Lemaire, C. Hue, Incremental weighted naive bays
classifiers for data stream, in: Data Science, Learning by Latent Struc-
tures, and Knowledge Discovery, Springer, 2015, pp. 179–190.

[38] V. Losing, B. Hammer, H. Wersing, KNN classifier with self adjusting
memory for heterogeneous concept drift, in: ICDM, IEEE Computer
Society, 2016, pp. 291–300.

[39] W. Dong, M. Charikar, K. Li, Efficient k-nearest neighbor graph con-
struction for generic similarity measures, in: WWW, ACM, 2011, pp.
577–586.

[40] W. Hoeffding, Probability inequalities for sums of bounded random vari-
ables, in: The collected works of Wassily Hoeffding, Springer, 1994, pp.
409–426.

[41] P. M. Domingos, G. Hulten, Mining high-speed data streams, in: KDD,
ACM, 2000, pp. 71–80.
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