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Proessing and transmission of on�dene inreurrent neural hierarhiesAlexander Gepperth
Reeived: date / Aepted: dateAbstrat This artile addresses the onstrution of hierarhies from dynamiattrator networks. We laim that suh networks, e.g., dynami neural �elds(DNFs), ontain a data model whih is enoded in their lateral onnetions, andwhih desribes typial properties of a�erent inputs. This allows to infer themost likely interpretation of inputs, robustly expressed through the positionof the attrator state. The prinipal problem resides in the fat that positionsof attrator states alone do not re�et the quality of math between input anddata model, termed deision on�dene. In hierarhies, this inevitably leads to�nal deisions whih are not Bayes-optimal when inputs exhibit di�erent de-grees of ambiguity or on�it, sine the resulting di�erenes in on�dene willbe ignored by downstream layers. We demonstrate a solution to this problemby showing that a orretly parametrized DNF layer an enode deision on�-dene into the lateny of the attrator state in a well-de�ned way. Conversely,we show that input stimuli gain ompetitive advantages w.r.t. eah other asa funtion of their relative lateny, thus allowing downstream layers to deodeattrator lateny in an equally well-de�ned way. Putting these enoding anddeoding mehanisms together, we onstrut a 3-stage hierarhy of DNF lay-ers and show that the top-level layer an take Bayes-optimal deisions whenthe deisions in the lowest hierarhy levels have variable degrees of on�dene.In the disussion, we generalize these �ndings, suggesting a novel possibilityto represent and manipulate probabilisti information in reurrent networkswithout any need for log-enoding, just using the biologially well-foundede�et of response lateny as an additional oding dimension.Keywords Reurrent neural networks · Neural oding · Bayesian infereneA.GepperthENSTA ParisTehBoulevard des Maréhaux, 91762 Palaiseau, FraneTel.: +33 1818 72041E-mail: alexander.gepperth�ensta-paristeh.fr



2 Alexander Gepperth
Fig. 1 Motivation and basi setting for the presented work. Left: Pereptual deision hier-arhy making use of response lateny for optimal deision making. We imagine a hierarhialortial network analyzing a small image path (red retangle) and analyzing it along two(or several) visual modalities as it has been demonstrated in lower visual areas of mammals.The (�xed) feed-forward onnetions between layers (A,B) ause feature seletivity in layer1/2 neurons (indiated by small symbols for some neurons) whereas the (�xed) lateral on-netions (C) ontain the data model for inputs to layers 1/2. Violations of this data model,e.g., by strong o-ativation of unimodal layer 1 neurons, will amplify unimodal responselateny, thus reduing in�uene on the multimodal integration layer 2. Right: atual neu-ral hierarhy onsidered in this artile. Layers (implemented by dynami neural �elds) andvisual modalities orrespond to the left diagram but stimulus struture has been simpli�edto admit only two possible stimulus types in eah modality. For simpliity, these will oftenbe termed the "left" and "right" stimulus. During experiments, one modality will alwaysreeive the same layer 0 inputs, whereas the other modality will reeive inputs leading tovariable deision on�dene, and the resulting deisions in layers 1 and 2 will be observed.1 IntrodutionThe issue of onstruting deep neural hierarhies has reently reeived on-siderable interest, sparked mainly by researh in deep belief networks (DBNs,[17,2℄) and onvolutional hierarhies[22℄. These approahes are suessful inseveral appliation senarios but do not make use of the fat that eah layerin biologial proessing hierarhies has strong lateral onnetions, leading toomplex non-linear dynamis within a single layer. Therefore, one may spe-ulate that the omputational potential of proessing hierarhies onstrutedfrom reurrent neural layers might be even higher than that of present-dayDBNs. Building suh reurrent hierarhies is however triky due to the inher-ent non-linear behavior of reurrent layers, and a way needs to be found tomake the nonlinear dynamis work 'for us' instead of 'against us'.In order to illustrate the basi issues when onstruting deep hierarhiesusing reurrent neural layers, we will use pereptual deision making as anexample, onsidering a deision-making task depited in Fig. 1. It exhibits atwo-level hierarhy where the high-level deision integrates two lower-level de-isions about the interpretation of omplementary sensory input �ows. Suhinterpretations are always based on an impliit model of the "true" natureof inputs whih we denote a data model. Suh data models are highly impor-tant for real-world proessing as inputs may be be orrupted by (struturedand omplex) noise. Using data models, however, the most likely interpreta-tion given the data model an be omputed before transmission to subsequenthierarhy levels, thus removing noise and inreasing signal quality. Suh in-



Proessing and transmission of on�dene in reurrent neural hierarhies 3terpretations amount to deision making about whih parts of a stimulus, ifany, to disard and whih ones to keep. Consequently, eah pereptual dei-sion an be attributed a on�dene value depending on the data model. Forstimuli whih have a ommon ause in the external world, as in the example ofFig. 1, only a single of the feature-seletive pathes an be ative at the sametime, that is to say: the data model must assign a lower on�dene to inputswith, e.g., ambiguity or on�it. As inputs to the lower hierarhy levels mayause di�erent degrees of deision on�dene, it is imperative to take theseon�denes into aount if the high level is to take Bayes-optimal deisions!However, as reurrent attrator networks usually onverge to an attratorstate representing only the strongest input, no information about the on-�dene of lower-level deisions remains in the onverged network states. Toremedy this, we investigate a possibility of inluding on�dene informationin neural responses, in suh a way that on�dene an easily be enoded, andequally easily be deoded by subsequent layers. As it turns out, it is the non-linear dynamis themselves that an, when parametrized orretly, naturallyimplement suh a mehanism. Due to the nonlinear build-up of membranepotential in model neurons, as well as due to ompetitive interations, inputon�dene aording to Fig. 2 an be translated into response lateny, i.e.,the time from stimulus onset to the development of signi�ant ativity. Vieversa, lateny di�erenes of inputs ause di�erenes in orresponding mem-brane potentials, whih give di�erent neural populations di�erent in�uenesin the ompetitive seletion proess.Summarizing this, we propose that reurrent neural onnetions de�ne adata model for interpreting input stimuli, and that the on�dene of deisionsunder this data model an be enoded into neural response lateny. Responselateny an thus be onsidered a seondary oding dimension in addition to,e.g., �ring rate1, enoding and transporting a on�dene measure aross hier-arhy levels. This mehanism e�etively multiplies the information arried byeah neural layer without requiring additional resoures, and an be extremelyuseful in real-world senarios where on�dene measurements are importantdue to inomplete, noisy and ontraditory sensory inputs.1.1 Biologial bakground on response lateny and on�deneThe e�et of response lateny is ubiquitous in biology, and there is onvergingevidene from both physiologial[27,30,19,25℄ and behavioral [16,5℄ investiga-tions that it plays a role in the neural enoding of information.Response lateny is linked to di�erent auses, some of whih are overlap-ping: neurons in the striate ortex, for example, enode stimulus ontrast intoresponse lateny[30℄. On the behavioral side, it has been found that deisionmaking proesses typially take longer depending on the number of on�iting1 This artile uses a rate-oded model for simpliity, but we do not wish to exlude spikingmodels, where the e�et of response lateny has been doumented as well[33,36℄
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Fig. 2 Simpli�ed input stimuli leading to di�erent degrees of deision on�dene. A)maximal on�dene: a single stimulus of maximal amplitude B) redued on�dene dueto ambiguity/on�it: a seond stimulus is present but of weaker peak amplitude, thus stillallowing a deision C) low on�dene due to strong ambiguity/on�it: two stimuli of equalpeak amplitude do not allow a deision at all D) lak of evidene: a single stimulus ofsub-maximal peak amplitude. The smaller the peak amplitude, the lesser the on�dene.alternatives[16℄, oneivably re�eting inreased response lateny on the neu-ral level. Similar e�ets have been observed in language proessing[5℄, wherethe ambiguity, i.e., the number of di�erent interpretations, gives rise to de-layed responses. The terms 'ontrast', 'on�it' and 'ambiguity' that are usedin the literature for the auses of response lateny denote very similar on-epts. In this artile, we will haraterize stimuli by the terms "evidene" (orlak thereof) as well as "on�it/ambiguity". Examples for inputs exhibitingthese properties are shown in Fig. 2.Sine biologial neural networks are strongly hierarhial, the existene ofresponse lateny automatially implies the existene of input lateny at higherhierarhy levels. In [19℄, it is speulated how input lateny ould be deodedin downstream neural populations; in this ontribution we propose just suha mehanism whih is omputationally simple and biologially plausible.1.2 Related modeling workAs a network model, we hoose the dynami neural �eld (DNF) model[1,34℄,whih is a reurrent, rate-oded model originally oneived to desribe or-tial proessing. Today, it is widely used for modeling memory [18,39℄, dei-sion making [7,11℄, human-robot interation[3,32℄. The model exhibits manyattrative properties, espeially ontinuous attrator dynamis whih is desir-able for, e.g., generating smooth robot ontrol ommands, or for modeling thedynamis of deision making[7℄.On the modeling side, response lateny is the key idea behind the rank or-der oding model[13,21℄ whih posits that the preise timing of arriving spikes,relative to stimulus onset, arries information about the relative importaneof the represented onepts. Some models[36℄ even onsider the �rst arriv-ing spikes at the exlusion of all others. Our �ndings are ompatible with allof these models, for although our investigation is based on rate-oded modelneurons, the key �ndings that ertain inputs lead to quiker responses, andthat quiker responses dominate downstream proessing (as demonstrated forspiking networks in [33℄), are at the ore of this investigation.



Proessing and transmission of on�dene in reurrent neural hierarhies 5When onsidering the larger impliations of how biologial neurons mightompute and manipulate probabilisti information, there exists a large bodyof literature[23,38,15,20,38,8,29℄. There seems to be agreement that neuralpopulations represent more than just values; indeed, most authors expliitlyassume that neural population ativity is related, in various proposed fash-ions, to probability or "belief" distributions[23,38,20,8,29℄. A very in�uentialidea posits that neural ativity is related to log-probability[8,29,15℄, whih isattrative beause the multipliation of populations ativities (whih is on-sidered neessary for integration and Bayesian inferene) then amounts to asimple summation whih neurons an do easily. However, other authors havequestioned the pratiability of this sheme[23℄ as well as the basi assumptionthat Bayesian inferene is indeed implemented by multiplying the populationativities in a neuron-by-neuron fashion. To the �rst point, it is laimed in [23℄that hierarhial inferene steps, i.e., using the result of one neural layer asthe basis for another one, require a re-enoding at eah level whih seems un-feasible. To the seond point, it is questioned[23℄ that a sensory measurementindeed onstitutes a probability distribution in the usual sense. Instead theauthors laim that eah neuron's �ring rate represents the realization of a ran-dom variable governed by a Poisson-like probability distribution determinedby the math of a�erent input with that neuron's preferred stimulus. Thus,the mean of eah neuron's ativity is deterministi and governed by the degreeof math. Aording to [23℄, the fat that a neuron represents the realizationof a random variable, and not simply a disrete bin in a probability distribu-tion, makes it questionable that multiplying neural ativities is a statistiallysensible thing to do in any ase.On the other hand, there are models of population enoding and Bayesianinferene whih do not use log-enoding[23,10,28,38℄ distributions, whih haveto resort to more ompliated shemes like attrator networks[10℄ or assump-tions about noise distributions[23℄.The presented work evidently does not use log-enoding for representingand proessing probabilisti information; we will disuss its similarities anddi�erenes to related researh in Se. 4.1.3 Researh questions and artile outlineThe main point of this artile is the onstrution of proessing hierarhiesthat take into aount on�dene for optimal deision making, see Fig. 1.Working with very simple input stimuli to demonstrate essential mehanisms,this artile poses and answers three researh questions:Q1: Can reurrent dynamis enode deision on�dene into re-sponse lateny? Here, we ask whether deision on�dene, i.e., the degreeof math between an input stimulus to the data model enoded by the re-urrent onnetions, an be unambiguously translated into response lateny.For suessful enoding, we demand that the response lateny should be a



6 Alexander Gepperthmonotonous funtion of deision on�dene. In other words: the less on�dentthe input, the greater the response lateny.Q2: Can reurrent dynamis deode response lateny? For deoding,we demand that the ability of arriving inputs to in�uene attrator formation isa monotonously dereasing funtion of their lateny. Put brie�y: later-ominginputs should be less likely to in�uene or win the ompetition proess.Q3: Can enoding and deoding steps be suessfully oupled? Here,we are interested in the fat whether two neural �elds, one enoding and onedeoding deision on�dene expressed as response lateny, an be oupledsuh that the resulting deision takes into aount on�dene di�erenes or-retlyThese questions will be addressed by simulating the neural hierarhy de-pited in Fig. 1 using the DNF model[1,34℄. After a review of the employedDNF model and its numerial simulation2 in Se. 2, we will more preiselyde�ne the arti�ial input stimuli in Se. 2.3 as well as the assumed data modeland its analytial formulation in Se. 2.4. The experiments onduted in Se. 3orrespond diretly to the researh questions raised here, and in Se. 4 it will bedisussed to what extent the experimental results give answers to these ques-tions. In Se. 4, it will also be attempted to generalize the obtained results,suggesting how reurrent networks an enode, and possibly learn, internaldata models. A ritial disussion of the impat of this work on neural oding,as well as a disussion of limitations and possible future work onludes theartile.2 MethodsWe base our investigation on the dynami neural �eld model [1℄ whih wasoriginally proposed to desribe pattern formation in the visual ortex. Essen-tially, dynami neural �elds are a lass of reurrent neural network modelsthat have been extensively used for modeling ognitive phenomena like de-ision making [6℄, motor planning [11℄, spatial ognition [18℄, eye movementpreparation [37,31℄ and objet reognition [12,9℄. Basi elements are simpledynami-state neurons, a �xed lateral onnetivity, and a (usually sigmoid)non-linearity.2.1 Model equationsWe use a slightly more general version of the original model in the sense thata�erent and lateral terms an be weighted di�erently using the oe�ients2 Python/C ode implementing all simulations of this artile is available underwww.gepperth.net/alexander
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α, β:

τu̇(x, t) = −u(x, t) + αS(x, t)

+ β

∫

w(x − x′)′f [u(x′, t)]dx′+ γσ(x, t) + h (1)where f [u(x, t)] =
1

1 + exp(−2(u(x,t)−θ)
ν

)Here, the quantity u(x, t) represents the membrane potential of the �eld attime t and position x, S(x, t) the a�erent input, w(x − x′) the �xed lateralinteration kernel, f [u] the non-linearity or transfer funtion, and σ(x, t) nor-mally distributed white noise. τ determines the time sale of �eld evolution,and h is the resting potential, i.e., the equilibrium potential in ase of noinput. We hoose a sigmoid transfer funtion, parametrized by a thresholdand a gain value: θ, ν. The oe�ients α, β and γ respetively determine theontribution of the a�erent input, the lateral reurrent interations and thenoise. The interation kernel w(x − x′) is usually hosen to be symmetri:
w(x − x′) = a0Gµ=0,σon(x − x′) − b0Gµ=0,σo�(x − x′) − c0, where Gµ=0,σ(x)denotes a Gaussian with mean µ and standard deviation σ, and σon < σo�.The onstants a0, b0, c0 are hosen suitably to ahieve the desired level of loalexitation/inhibition(a0, b0) as well as global inhibition (c0). To ensure numer-ial stability, we lip the neural �eld potentials u(x, t) whenever they exeedthe range de�ned by [umin, umax].2.2 Numerial simulationFor performing numerial omputations, neural �elds potentials are disretizedto a grid ofN×N "neurons", denoted by û(x, t). The lateral interation �lter ŵis disretized as well, having a width of 5σo� elements, while global inhibition isobtained by summing all elements in the disretized �eld. Thus, for disretizedneural �elds, the update equation reads
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+
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∑
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] (2)2.3 Used stimuliAs mentioned in Fig. 1, we will use syntheti input stimuli S ≡ S(x, t) in ourexperiments in order not to ompliate the demonstration of the desired e�ets



8 Alexander Gepperthby subtleties of real-world data proessing. Stimuli S onsist of two Gaussian"bubbles", at two �xed positions, with equal varianes (see, e.g., [34℄), whihhave peak values A1, A2 ∈ [0, 1]. We furthermore assume that S is a version ofthe "true" underlying stimulus M whih is orrupted by strutured noise, andthat M ontains only a single Gaussian at one of the two allowed loations. Man therefore be desribed by two numbers M1,M2 ∈ {0, 1}, M1 +M2 = 1,indiating the amplitude of Gaussians at eah of the two loations. Examplestimuli S are shown in Fig. 2. For simpliity, we will often refer to a stimuluswhere only one Gaussian is present as "left" or "right" depending on theGaussian's loation.2.4 Impliit and expliit data model formulationBy the assumptions about the "true" stimulus M underlying a sensory mea-surement S as indiated in the previous setion, we impliitly de�ne a datamodel requiring a single loalized ativity peak of a ertain size. This �ts wellthe pereptual deision making senario of Fig.1 and is roughly realized by the"default" lateral onnetivity often used with DNFs, that is to say, Mexianhat interation kernels with added global inhibition. This data model gives im-mediately rise to notions of stimulus on�dene, leading to the simple oneptsof on�it/ambiguity or lak of evidene as illustrated in Fig. 2.However, in order to theoretially verify the orretness deision makingusing orrupted stimuli S using Bayesian inferene tehniques, we require anexpliit probabilisti model P (M|S), relating S and M, the "true" underlyingstimulus. This amounts to speifying the probability of a ertain M beingpresent given its orrupted measurement S. Suh a data model is a highlyuseful tool, if available, sine it an be used for the following purposes:� it de�nes sets of allowed or forbidden stimulus values stimulus values
M+,M− haraterized by p(M|S) > 0∀M ∈ M+ and p(M|S) ≡ 0∀M ∈
M−� it allows to estimate the most probable "true" stimulus M

∗ given a or-rupted stimulus S as M∗ = argmax
M
p(M|S)� it allows to assign a on�dene c = P (M∗|S) to the most probable truestimulus. It is this on�dene that should be transmitted to a subsequenthierarhy stageIn this artile, we will onsider only stimuli of a very simple nature, bothonerning M and S as outlined in Se. 2.3. In line with our de�nitions ofambiguity, on�it and lak of evidene as illustrated in Fig. 2, the data modelshould have the following simple properties:� punish ambiguity or on�it: Ideally, only one dominant Gaussianshould be present in the input. Con�dene should derease if the seondGaussian has a nonzero peak value� punish lak of evidene. Ideally, this single Gaussian should have a peakvalue of 1.0. If it is lower, the on�dene should derease.



Proessing and transmission of on�dene in reurrent neural hierarhies 9Table 1 Parameters used in the simulation experimentsparameter value funtion parameter value funtion
τ 15 time onstant umin -2 min. �eld potential.
α 1 input strength umax 3 max. �eld potential
β 4 lat. int. strength θ 0.5 transfer fun. thresh
γ 0.005 noise strength ν 2.5 transfer fun. slope
h -1.0 resting potential σon 6 inhibition radius
a0 1 on �lter strength b0 3 o� �lter strength
c0 0.10 global inhibition σon 3 ex. radius
σo� 6 inh. radius NxN 32 neurons
T 280 iterations/pattern� punish lak of math. If the dominant Gaussian of the stimulus S isdi�erent from the peak in M, probability should drop sharplyThe preise form of the model is not important for deision making as long asthose properties are ful�lled. A simple hoie of model is, for example:

P (S|M) ∼ exp

(

−
|A1 −M1|+ |A2 −M2|

σ

) with σ = 0.2 (3)By assuming that all stimuli M are equally probable a priori, P (M) = onst.,we obtain an a posteriori probability distribution representing the sought-fordata model:
P (M|S) = P (S|M) (4)When performing deision making experiments in Se. 3, this model will beused for verifying the orretness of the deisions. The fundamental assumptionof this artile is that neural �eld layers with a orret hoie of parametersand lateral onnetions an approximate suh a model by their dynamis. Inpartiular, we assume that the �nal onverged state of eah layer representsthe MAP estimate of this layer's inputs, and that the response lateny of thisonverged state enodes its on�dene under the data model.The experiments of the following setion will show that this is the ase atleast for the simple stimuli used here.3 ExperimentsIn all experiments, several input patterns (see Fig. 3) are presented to thenetwork(s) for T iterations, in whih time the network dynamis are simulatedaording to eqn. (2). Before eah pattern presentation, all network potentialswere reset to the value of the resting potential h. Unless stated expliitly, weuse the parametrization indiated in Tab. 1 in all experiments of this setion.These parameters ensure that neural layers onverge to single-peak solutionsand are thus in aordane with the analytial model of Se. 2.4, see [26℄ fora theoretial justi�ation. The hoie of good parameters for DNFs is slightly
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Fig. 3 Variable input stimuli used in our experiments (lower row), leading to deisions(upper row) of variable on�dene expressed by response lateny. A) Variation of on-�it/ambiguity, modelled by the di�erene ∆A of the peak amplitudes of the left and rightGaussian. B) Variation in the degrees of evidene, modelled by the peak amplitude A ofthe single Gaussian stimulus C) Variation of relative lateny ∆t for a omposed stimulus.In this ase, eah of the Gaussians has the same amplitude A1 = A2 = 1, whereas theirrelative lateny is varied, thus giving eah Gaussian a di�erent in�uene on the dynamisof the neural layer.triky, espeially if we wish to observe lateny e�ets. However we have goodreasons to believe that most of the parameters an in priniple be determinedfrom data using self-adaptation proesses as desribed, e.g., in [24℄. There werea few priniples that we found useful in guiding our hoie of parameters:� No lateral interations in the resting state: This implies that f(h) ≈ 0, andthus onstraints on ν and θ are introdued� Potential ut-o� must not introdue new e�ets. This implies that f(umax) ≈
1 and f(umin) ≈ 0 whih an be obtained by a proper setting of umin, umax.� Lateral and a�erent inputs to any neuron should be, on average, of similarmagnitude. This mainly onstrains α, β and γ.3.1 Enoding ambiguity/on�it into response latenyIn the �rst experiment, we will demonstrate that a proper parametrizationof neural layers an ahieve an unambiguous translation of ambiguity/on�it(see Fig. 2) into response lateny. To show this, we will suessively applystimuli of varying degrees of on�it/ambiguity to the neural layer and mea-sure the response lateny of the winning peak. Using input data aordingto Se. 2.3 and Fig. 3 A), we reate two Gaussian stimuli with initial ampli-tudes A1 = 1, A2 = 0, where the "true" solution is supposed to be "left", i.e.,

M1 = 1, M2 = 0. In suessive steps we inrement the amplitude A2 suh thatthe di�erene in amplitudes, ∆A, goes from its initial value of 1.0 to 0.0, whihalways leads to a "left" solution exept for ∆A = 0. Evidently, this variationof A2 redues the probability P (”left”|S) of the attrator solution under theprobabilisti model of. (3). As shown in Fig. 4 (left), we observe a monotonous
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Fig. 4 Enoding of deision on�dene using single neural layers for input stimuli S withdi�erent types of strutured noise: "ambiguity/on�it" (left diagram) as well as "lak ofevidene" (right diagram). Peaks always develop on the "right" position in the enoding�eld with an input-dependent lateny, expressing the MAP estimate along with a deisionon�dene. Both graphs show a monotonous relationship between response lateny and theprobability under the analytial data model, P (”right”|S), underlining the relatedness ofthose quantities. For eah measurement point in both graphs, the assoiated parameters ofthe input stimulus are given as well: either the di�erene between on�iting peak amplitudes
∆A, or the strength of the single peak A.but nonlinear relationship between P (”left”|S) and response lateny, showingthat the latter an indeed be used unambiguously to express the former.
3.2 Enoding lak of evidene into response latenySimilarly to the previous setion, we reate input stimuli aording to Se. 2.3and Fig. 3B), although now with only one Gaussian "left" stimulus whoseamplitude A is varied from 1.0 to 0.9, thus reduing on�dene of the attratorsolution P (”left”|S) omputed using eqn. (3). The "true" stimulus is supposedto be "left", i.e.,M1 = 1,M0 = 0. As an be observed in Fig. 4 (right), there is amonotonous, almost linear relation between P (”left”|S) and response lateny.This result shows that what we alled "lak of evidene" in Se. 1 redues theon�dene of deisions under the analyti data model, and that this on�deneis unambiguously represented by response lateny.The reason we keep the amplitude of the Gaussian in the range of [0.9,1.0℄is that the latenies grow exessively for A → 0.9, up to the point whereno ativation is produed at all within T iterations for A < 0.9. While itis straightforward to �nd neural layer parameters that allow the represen-tation of A < 0.9, they are usually not ompatible with the enoding ofunertainty/ambiguity demonstrated in Se. 3.1 when the full range of un-ertainty/ambiguity should be represented. This seems to be a onstraint ofthe reurrent networks model, see Se. 4. As this artile fouses more on therepresentation of ambiguity/on�it, we demonstrate the enoding of "lak ofevidene" for ompleteness, but will not use it further in what follows.
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∆tFig. 5 Deoding response lateny. The experiment onsiders a single neural layer reeivingan input omposed of two equally strong Gaussian stimuli (denoted "left" and "right")with relative lateny ∆t. Depending on the ∆t, a peak forms either at the "left" or the"right" position (green/red urves), with a lateny depending on ∆t whih an be seen inthe diagram. For ∆t = 0, no peak forms during the observation interval, orresponding tothe refusal to take an impossible deision.3.3 Deoding response latenyAfter having shown that deision on�dene is translated unambiguously intoresponse lateny, we are now going to show that lateny an be deoded toin�uene deision-making in just the right way. For this purpose we will presenta neural layer with an input ontaining two Gaussians of equal peak amplitude

A1 = A2 = 1, arriving with di�erent latenies t1, t2. We assume the "true"stimulus to reside at the loation of the earlier-arriving Gaussian. This isintended to emulate the situation where these two Gaussians ome from twoseparate neural layers faed with inputs of di�erent on�dene, see Fig. 3D).As a two-peak input does not �t the impliit data model of the neural layer,it is fored to take a deision, and we want to �nd out how this deision isa�eted by the relative lateny ∆t.As an be observed in �g. 5, we �nd that ∆t has a strong in�uene on de-ision making. Not only does the �rst-arriving Gaussian ompletely dominatethe layer's response, but we also �nd that, as ∆t dereases, response latenyinreases monotonously. Both �ndings are intuitive in the sense of optimaldeision making: as the lateny of inputs an be linked to the on�dene ofthe deisions that generated them (see Se. 3.1), a good deision must be infavour of the earlier (i.e., more on�dent) input. Likewise, if two inputs havesimilar latenies (i.e., on�denes), the on�dene of the deision should belowered, whih is expressed by in inrease in lateny. This supports the on-strution of deeper hierarhies, sine the deision of the deoding �eld hasitself a on�dene that is again expressed as response lateny.
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Fig. 6 Shematis of the three-stage hierarhy of reurrent neural layers used for the testingof optimal deision making. The variable noise in the input to I1, and the �xed noise in theinput to I2 are translated into variable and �xed latenies of neural responses in I1 and I2.For simpliity, stimuli are hosen suh that the "right" stimulus always wins the ompetitionin I1, whereas the "left" stimulus always wins in I2. This leads to a ompetition betweenthose two positions in D, whih deides between "left" and "right" based on the relativelateny of inputs from I1 and I2.3.4 Optimal deision making in a hierarhyAfter the preparations of the previous subsetions, we are now ready to on-strut a 3-stage hierarhy out of idential neural layers. The hierarhy is on-struted as shown in Fig. 6, and all layers use the parameters of Tab. 1. Twolow-level layers, I1 and I2, enode the on�dene (whih is varied for I1) oftheir inputs into response lateny, whih is in turn deoded by the �eld D.As we know that the impliit data model of neural �elds, enoded intotheir onnetivity and dynamis, an approximate the analytial data modelof Se. 2.4 as shown in Ses. 3.1, 3.2, 3.3, this experiment is meant to de-termine whether a deeper hierarhy will respet the analytial data modelas well, amounting to optimal deision making behavior in D for arbitrarydeision on�denes in I1 and I2. Inputs to both I1 and I2 are of the "on-�it/ambiguity" type illustrated in Fig. 3A): Whereas the on�dene in I2 iskept onstant by using a onstant di�erene between peak amplitudes ∆A2= 0.6, the on�dene in I1 is varied by manipulating the amplitude di�erene
∆A1 in analogy to in Se. 3.1.To determine the optimal deision to be taken by D, we need to alulatethe a posteriori distribution P (M|S1S2). Assuming independene of S1 and
S2, we an simply multiply and obtain

P (M|S1S2) = P (M|S1)P (M|S2) (5)To obtain a deision, we must ompare the a posteriori probabilities P (”left”|S1S2),
P (”right”|S1S2). To this e�et, we alulate the sign of the log-odds-di�erene
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A) 1B) 1C) 1D) 1E) 1F) 1G) 1H) 1I) 1Fig. 7 Optimal deision making in a three-stage hierarhy, see also Fig. 6 and text. Low-level deisions deisions and their on�denes, arising from a variable "ambiguity/on�it"type of input (parametrized by ∆A, the di�erene between peak amplitudes) to the lower-level �eld I1, are deoded by the high-level �eld D to take a Bayes-optimal deision. Shownis the temporal development of neural ativities in D at the positions of the "right" (redgraphs) and "left" (green graphs) stimuli. The blue line indiates the theoretial log-odds-di�erene whih indiates the optimal deision ("left"/"right") by its sign. Left: oarseresolution overing the omplete range of ∆A. Right: �ner resolution around the pivotalpoint of ∆A = 0.6.(LOD): sgn (LOD) = sgn(log P (left|S1S2)

P (right|S1S2)

)

= sgn (logP (left|S1S2)− logP (right|S1S2)) =

= sgn(6− 10∆A1). (6)Given the nature of the inputs S1,S2 as depited in Fig. 6, D should deide"right" if sgn (LOD) = 1, it should not deide if this quantity is zero, and itshould deide "left" when it is −1. When viewing the results given in Fig. 7,the deision behavior exhibited by D exatly mathes the optimal deisionsindiated by the LOD alulation. We observe that, for ∆A1 > ∆A2, the"right" stimulus from I1 wins the ompetition in D as it is more on�dent;similarly, the "left" stimulus from I2 wins for ∆A1 < ∆A2 = 0.6. At ∆A1 =
∆A2, output in I1 and I2 have equal on�dene, re�eted in a refusal of D totake a deision (no signi�ant ativity develops either at the "left" or "right"position).3.5 Resolution of deision making in a hierarhyAs neural responses are usually quite noisy, this will obviously a�et a neu-ral ode using response lateny. We therefore wish to know how the (weak)noise we simulate in our neural layers a�ets deision making when takingnear-ambiguous deisions. As shown in Fig. 7 (right), deision making is stilloptimal in ases where amplitude di�erenes in I1 and I2 do not get too sim-ilar. An exeption are ases where amplitude di�erenes are within 0.02 of



Proessing and transmission of on�dene in reurrent neural hierarhies 15eah other (e.g., ase D) in Fig. 7) (right): here the resolution of response la-teny is apparently insu�ient to enode and deode on�dene with su�ientpreision. For these borderline ases, the behavior of D has a strong randomomponent, that is to say, the deision taken by D depends on the preiseform and the initial onditions of the noise.4 DisussionIn this setion, we will �rst review the results that were obtained, then pointout and disuss topis that merit speial attention, as well as list shortomingsand limitations of our work. As a last point, we will try to generalize the�ndings of this artile, and onlude with an outlook of future work.4.1 SummaryWe presented experiments that perform statistially optimal deision mak-ing in a 3-layer hierarhy of reurrent neural layers, implemented as dynamineural �elds. It was shown that, as a onsequene of the non-linear reurrentdynamis in eah layer, on�it/ambiguity or lak of evidene in input stimulian be unambiguously enoded as response lateny of attrator states. Simi-larly, response lateny an be deoded by subsequent hierarhy stages, takinginto aount the on�dene of lower-level deisions. Finally, it was veri�ed byomparison to an exat probabilisti model that a hierarhy of neural �elds anindeed take Bayes-optimal deisions by exploiting the information ontainedin response lateny, and that this ability is robust to moderate noise levels.4.2 Partiular pointsParametrization All of the aforementioned funtions were realized by �ndingappropriate parametrizations for the DNF model, not by making hanges tothe model itself. It is important to note that the enoding and deoding of la-teny are inherent in the neural dynamis when orret parameters are hosen.Clearly, the parameters of di�erent neural layers in a hierarhy need not beidential; however it is imperative that the hosen parameters allow eah neu-ral layer to enode and deode lateny within the simulation time for a singlestimulus, T . Fortunately, using the guidelines for parametrization mentionedin Se. 3, we were able to �nd a single set of parameters appropriate for allhierarhy layers. That enoding and deoding an be performed with the sameparameter settings is not self-evident, but we found, in the ourse of numerousexperiments, that parameters allowing enoding were almost always suited fordeoding as well. Sine the proess of �nding the required parameter valuesis not straightforward at all, we believe self-adaptation proesses[35,24℄ mustbe applied to automate the proess of adapting parameters to data statistis.



16 Alexander GepperthSine lateny enoding and deoding were found to work for any parametriza-tion where input stimuli ould reate an attrator in less that T iterations,self-adaptation proesses would just have to ensure that this ondition is met,e.g., by maintaining temporal averages of neural ativations over single pat-tern presentation (T iterations) at some target value. If no ativations appearwithin T iterations, suh averages would be too low, while they would be toohigh if neurons were onstantly ative over the whole period [0, T ].Representation of probability In the presented study, we e�etively assumethat reurrent neural dynamis approximate a probabilisti data model P (M|S)for the "true" values of input variable M given the a�erent inputs S whihare a�ited by (strutured) noise. At least for simple stimuli, we have shownthat our reurrent network approah represents both the MAP estimate M∗ =arg maxP (M|S) (represented by the position of the loalized attrator solu-tion), as well as a nonlinear transformation of P (M∗|S) itself (represented byresponse lateny). As an be seen from the results of Se. 3.1, this enodingof the deision on�dene P (M∗|S) is one-to-one but non-linear, so that re-sponse lateny does not diretly represent a probability here. This is howevernot required to take orret deisions: as all we need to do is to ompare laten-ies in di�erent areas of the input while assuming they were generated usingthe same underlying data model. In this study, the model P (M|S) is e�e-tively unimodal beause a single Gaussian is assigned the highest a posterioriprobability. This is re�eted in the lateral onnetivity of the used networkswhih loally favors Gaussian ativation peaks but restrits their number toone due to global inhibition. There is however nothing whatsoever to keep usfrom implementing or learning other, more general data models by adaptingthe lateral onnetivity struture of reurrent networks.Comparison to related work When onsidering the representation of probabil-ity we disussed in the last paragraph, several important di�erenes to relatedwork are notable: First of all, and di�erent from [15,29,8℄, our approah doesnot treat neural ativities as log-probabilities. More generally, and in line with[23℄, we do not treat the set of input ativations S as a probability distri-bution but as a olletion of physial measurements orrupted by noise. Inontrast to [23℄, however, we do not require this noise to have a partiularform as long we an represent it in our internal data model P (M|S), enodedin the lateral onnetions of eah layer. A further di�erene to [23℄, who on-sider Bayesian integration separately for eah neuron, is that we onsider datamodels that are global in the sense that they onsider the values of other, notneessarily adjaent neurons in the omputation of the a posteriori probability.Summarizing, this artile suggests a new way of approximately representingand proessing probabilisti information in neural hierarhies whih is quitedi�erent from what has been proposed in previous works, although it has beenvalidated only for very simple stimuli. To be fair, on the other hand, mostprevious work on the subjet uses test stimuli of similar simpliity with thepossible exeption of [29℄.



Proessing and transmission of on�dene in reurrent neural hierarhies 174.3 LimitationsNoise In the simulations of Se. 3, noise was kept at an intermediate level,and we ould show that the "resolution" for stimuli whose on�dene was sim-ilar was in fat quite good, see Se. 3.5. Experiments onduted with higherlevels of noise show that stimuli of similar on�dene an interhange theirtemporal order as a onsequene of noise. To reat to this loss of resolution,the parameters of neural layers must be adapted suh that the range of on�-denes that an be represented is narrowed, giving more resolution to the highon�denes and dropping the lower ones. At the same time, the mehanismsunderlying attrator formation ould be revisited and adapted, thus makingthem less suseptible to noise. Clearly, the behavior of our approah understronger noise merits further attention.Can every probabilisti model be approximated? In the analysis of the experi-ment of Se. 3.2, it was mentioned that we were unable to �nd a set of param-eters for whih the neural layers ould represent the full range of on�denesarising from either lak of evidene and ambiguity/on�it. Maybe suh pa-rameters exist, but we believe it is more likely that not every oneivable modelmay be approximated faithfully by reurrent neural dynamis. What an bedone, however, is to restrit the range of represented on�denes both for on-�it/ambiguity and lak of evidene to a point where both an be representedfaithfully, at the ost of not representing some of the less on�dent patterns.We do not onsider this to be a signi�ant problem sine only the least on-�dent inputs would have to be disregarded (who would not win subsequentompetitions in any ase). Nevertheless it will be worth investigating whether,and how, the greatest possible set of sensible data models an be approximatedby reurrent dynamis.Loss of information in deeper hierarhies The basi reed of Bayesian dataproessing[4℄ is to always transmit and manipulate distributions, and to takethe �nal deisions only at the end of a proessing hain by hoosing the argmaxof the �nal distribution. This is learly a very intelligent strategy sine noinformation is lost on the way through, e.g., a deision hierarhy. Thus, ifapparently irrelevant alternatives are not already disregarded at low hierarhystages, they might still hange the �nal deision when integrated at higherstages. The presented study outlines a possible way towards this goal, foralthough ompeting stimuli do get suppressed at the lowest hierarhy stages,see Se. 3.4, at least the fat that something signi�ant was suppressed istransmitted as on�dene, and taken into aount at the next stage. What ismore, with another data model that allows for several loalized stimuli in theinput, alternatives ould be transmitted through the hierarhy. Nevertheless,eah hierarhy stage potentially suppresses information using its data model,and thus the full "Bayesian dream" is not yet realized by our approah. It an(and should) of ourse be debated whether a full Bayesian treatment is reallyrequired for robust real-world proessing, or whether the hosen approximation



18 Alexander Gepperthwill already be feasible or even bene�ial, as transporting the full probabilistiinformation might be strongly suseptible to noise as well.Generality The results presented here were obtained using the dynami neural�eld model as a basis for simulation, so we wish to disuss how our results willgeneralize to other reurrent network models, espeially spiking ones. Thisof ourse depends to a great extent on the preise form of the used modelequations, but at least for spiking models using an integrate-and-�re typeof update equation we an be reasonably sure that our �ndings will holdtrue. As response lateny is due to delayed build-up of membrane potential(aused by lateral inhibition), and sine the basi update equation for themembrane potential in integrate-and-�re models is idential to eqn. (1) exeptfor spike generation and reeption, the same mehanism should apply, althoughof ourse with di�erent parameters. This assumption is supported by reportsof response lateny in [33℄ with integrate-and-�re models.5 Outlook and future workAs we already mentioned the previous setion, it is for the most part the lat-eral onnetion weights of a reurrent neural layer that enode the data model
P (M|S). In the present study, this model was very naive in just admittinga single Gaussian ativity peak as an attrator solution whih we assume torepresent the MAP estimate M∗ = arg maxP (M|S). The advantage of us-ing a neural network is that lateral onnetion weights, and thus an internaldata model, ould be learned from data statistis by simple orrelation-basedrules. On the minus side, this would require giving up the notion of a loation-independent onvolution kernel in eqn.(1), resulting in muh higher memoryonsumption. Nevertheless, this would allow to model real-world inputs om-ing, e.g., from a visual sensor, and to use the internal data model to detetdeviations from the ordinary for more robust proessing. This will be espeiallyrelevant for our work on autonomous and self-organized learning in real-worldsenarios (see, e.g., [14℄), where it must be determined whether omplex newrepresentations of visual stimuli are out of the ordinary, and should thus trig-ger learning. The detail of suh a ombined learning proess will ertainly bethe subjet of future work, as well as the question of how to self-adapt theother parameters of a reurrent network to best math the data statistis.Furthermore, the in�uene of noise on the lateny ode will have to be in-vestigated with the goal of allowing optimal deision making even in the faeof strong noise. All these e�orts will lead to a better understanding of howthe human brain proesses probabilisti information, with the aim of reatingmore robust intelligent systems operating under real-world onditions.
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