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Abstract— In this contribution, we present a real-time pedes- of a pedestrian with a certain behavior, but does not or és lat
trian detection and pose classification system which makesse to do so, a Driver Assistance System could warn him about
of the computing power of Graphical Processing Units (GPUS)  {he sjtuation. However, this requires that the system ig abl

The aim of the pose classification presented here is tot Ve it ) - d to be abl
determine the orientation and thus the likely future movemet 0 perceive Its environment. In our case, we need fo be able

of the pedestrian. We focus on the evaluation of pose detecti  tO reliably detect pedestrians in inner-city scenes.
performance and show that, without resorting to complex Pose classification takes this consideration even further a
tracking or attention mechanism, a small number of safety- it gllows, under certain conditions, to estimate a pedessi

relevant pedestrian poses can be reliably distinguished ding o+ 4 ctions. For this, even a small number of pose categjorie
live operation. Additionally, we show that detection and pse N o

classification can share the same visual low-level features May be _SUfﬁCient (“front view”, “back Vi(_a\_N ’ _facing right”
achieving a very high frame rate at high image resolutions and “facing left”). A reliable pose classification systenrmca
using only off-the-shelf hardware. be used to focus attention on a pedestrian that might cross
the road even if the pedestrian is not, at the moment, in the
I. INTRODUCTION vehicle’s path.

This article presents a real-time system for combined In this article, we will focus on pedestrian pose classifi-
pedestrian detection and pose classification, aiming atysaf cation performance, as our pedestrian detection method is
products in future generations of vehicles. It uses onllargely similar to methods presented in the literature ,(see
standard computer hardware and makes massive use e0fj., [8], [10], [12] for an overview). Additionally, we wil
the parallelization capabilities of graphics processimisu show that pose classification is possible using features al-
(GPUs) to accelerate the system and make it real-timeady computed for pedestrian detection, minimizing tree us
capable (see [21], [18]). of computing resources. Numerous contributions showed the

Applications on GPUs become more and more relevaaidvantage of using tracking for improving the detectiore(se
as they are now available at a relatively low price. Evefi], [19], [9]). However, we chose to avoid using tracking at
the latest generations of smartphones are equipped wih thihis stage of detection because even if the movement gives a
technology, allowing possible mobile applications to egeer strong indication about the pose of a pedestrian, it woutd no
The fact that we can now develop these algorithms usinige beneficial in multiple inner-city scenarios. For examifle
standard hardware leaves no doubt about the possibility topedestrian stands on the sidewalk near to a zebra crossing
apply them to embedded products. The necessary technolagyd does not move, it is not possible to estimate its facing
is now affordable and widely available. direction with tracking.

A. Motivation B. Related work

Accidents involving pedestrians in inner-city are fre-

quently fatal, even at a relatively low driving speed. Indiee

pedestrians have no protection in case of impact, they a %thors (e.g. [11], [8], [14], [20], [4]), mainly in the camt

highly vulnerable. The goal behind pedestrian detectioR road traffic and surveillance. Due to the real-time nabfre

by intelligent vehicles is, for the most part, inspired byour approach, we are interested in the distinction of a small

safety considerations: if pedestrians can be detectednim, ti number of behaviorally relevant pogategones(see [.11]’ .
collisions might be avoided. [8]) that allow a guess at a pedestrian future behavior. This

. . . is different from the determination of a precise geometric
The inner-city scene can be extraordinary complex, and i . C . :
: ; . . ose, i.e. the heading in a 3D space, as described in [14],
requires the driver to focus his attention on the parts of t

scene he (subconsciously) finds relevant. This prioritpat 3] which is, in addition, hard to reconcile with real-time

has its drawback: the driver can simply miss something. ﬁonstramts. For the time being, our approach makes no use

the driver should react to the appearance or to the movemé)r{ t_rackm_g as demqnstrated in [23], [20],_as we want to
achieve first a sufficient performance on single-frame pose
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The issue of pose classification has been raised by several



« Show the enormous potential of off-the-shelf GPUs
for object detection applications. This will be mainly
shown by measuring frame rates, while verifying of
course that detection and pose classification perfor-
mances are equivalent to CPU-based approaches which
are not real-time capable.

« Show that pedestrian detection and pose classifica-
tion can operate on the same feature basisThis is . Detection
especially important as it avoids the computation of i
dedicated pose classification features, again with the
aim of increasing processing speed.

« Prove that pose classification works robustly under
realistic outdoor conditions. As pose classification
depends crucially on the detection method to provide
candidates, it is complicated by all noise that is intro-
duced by that detection method. It is therefore important
to show that pose classification has good performance
under realistic outdoor conditions.

« Determine which pose classes can be reliably distin-
guished.Some pose classes like “front view” or “back
view” are visually very similar. We investigate whether

performance can be increased by grouping these two ) ) i ) o
classes into a single one Fig. 1. Block diagram of the real-time pedestrian detedfiose classifi-

) ) cation system.
To deliver these messages, the article proceeds as follows:

in Sec. Il, the training, evaluation and the component parts
of the real-time system are described in detail. Subsetyyen
we will present experiments validating the previous points
Sec. Il and discuss the significance of the results in Sec. |
In Sec. V, we will conclude this contribution by providing
an outlook of our future works.

Pose
classification

Sec. [I-A, we use the GPU based implementation contained
in the OpenCV library ( [2]) to speed up the feature com-
\éutation process, and an own GPU implementation of the
sliding-window SVM classification, where we took care that
the entire feature computation and classification toolrtha
II. METHODS is conducted in GPU memory.

A. Images features for classification 1) Pedestrian detectionWhile common approaches use
near SVMs for detection, our approach makes use of more
owerful (but slower) non-linear SVMs as well, arranging
5VMs in the form of a detection cascade as outlined in Fig. 2.
tPis allows us to circumvent the speed disadvantage of non-
near SVMs as they are only applied to the (few) detections

terms presented in [5], we use an image size of 800x600! iven by the linear SVM stage. The training and application

cell size of 8x8 pixels, a block size of 16x16 pixels, a borde? SVMs 1S further descr_|bed n Sep. Il-C.2. We_use linear
of 0 pixels, and a window size of 32x64 pixels. and non-linear SVMs for implementing the detection cascade

When computing HOG features on a single image 0[i;resented previously. We consider a detection window to

dimension 32x64. we obtain a HOG feature vector of 75 ontain a pedestrian if the outputs from both the linear and
entries. We use the module “gpu” for all calculations and€ nonlinear-SVM.siin and snonin exceed their respective
access the internal OpenCV data structures so as to get hH?&elsh‘:LdSﬂ"n ""lf‘d H“O“g“\'/l\-/lro sa\lle tcompu(';aﬂon ftlme,h\_/vi
of the references in GPU memory. This is important sinc8PPYY the non-inear S only 10 windows for whic

we want to perform the sliding window SVM search onSiin > Oiin. There will usually still be overlapping detections:

the computed features without copying them to the cpy® do _not perform non-maxim_a suppression in order to keep
memory, which is very costly in terms of processing time. a maximum of correct detections to be passed to the pose
classification stage.

B. Description of the real-time system 2) Pose classification:Hypotheses who have been ap-
The presented system consists in a cascade of pedestimaved both by linear and non-linear SVMs are subjected to

detections followed by a pose classification, as can be sepase classification using a set &f pose-specific non-linear

in Fig. 1. Both pedestrian detection and pose classificatidBVMs. After training, pose classification is conducted gsin

operate on the same basic HOG features, and use the sgmeéestrian images provided by the real-time system. We

classification method, namely linear and non-linear suppoemploy a one-against-all approach (see [15]) to diffeeeti

vector machines implemented on GPU. As explained ibetween pose classes, a method which has been verified to

All classification experiments are based on the computg
tion of Histograms of Oriented Gradients (HOG) feature
using the open source OpenCV library. This technique d
scribes localized patches of an image by counting the am0L1
of gradient orientations in multiple directions. Adoptitite !
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Fig. 2. Internal classifier cascade of the real-time peiestdetection Fig. 3. Step-by-step pedestrian pose classification system

system.

. , o _ C. Training and evaluation
be competitive to other approaches like pairwise one-atyain

one (see [16], [22]). It has the further advantage of scalinlg 1) Data usgd for training:For training the I_mgar and non-

linearly with the number of classes, which facilitatesnimag ~ 1n€ar pedestrian detectors, we use the training set fram th
and real-time application. If we assunié pose classes, Daimler Monocular Pedestrian Detgctlon Benchmark (DM—
a total of K pose classifiers needs to be trained, alwaySPB: [7]), as well as from the Daimler Stereo Pedestrian
labeling examples of a single pose class as positive exmp_@enchmark [6]. Each benchmark contains cut-out training

during training, and the remaining examples as negative oné2des and annotated test videos from which images could
(hence the name “one-against-all’). Platt-Scaling [1Tsed be cropped. We do not use these images, but instead use the

to compute two sigmoid parametess, x;,i € [0, P — 1], full training images. _
which allows us to convert SVM outputs to approximate Tq easily obtain training and test data for the_pose classi-
probabilities. For testing, given the HOG feature vectoaof fication system, we recorded a set of outdoor videos from a

pedestrian of unknown pose, &l SVMs are simultaneously €' during daytime, on a parking lot in California. In these
fed this vector, generatingy’ pose scores; (i € [0, K —1]), monochrome videos of resolution 800x600, only a single

which are converted to probabilities using the sigmoid pedestrian is ever visible whose pose (belonging to oneeof th
parameters.;, x; asp; = oy, x, (s:). We then search for the categories given in Sec. I) is constant throughout the video
SVM with the highest out;ﬁut probability;. If it exceeds saving the _trouble of annotating poses. All object detected
the threshold), we assign the corresponding pas¢o the by the basic detector of the system are cut-out and passed

example. Else we assign a constant value which means t}3s; training data to the pose classifier training. We recoeded
the system was not able to take a decision: total of 52 video sequences of around 300 images containing

a single pedestrian walking in front of the camera.

Pmax = MaX p; (1) 2) Details on SVM training:All training is performed
argmax p; if pmax >0 using the libSVM library and tools [3]. We assume that
- -1 else @) training data exist as set of images for which the semantic

3) pose category is known, all having a size of 32x64 pixels.
From these images, we compute HOG features according
By varying 6, we determine how certain the system musto II-A and store the resulting feature vectors, along with
be in order to validate a classification of the pose. The posaitably assigned class memberships, in a libSVM training
classification is illustrated in Fig. 3. file.



3) Evaluation of pedestrian detectionie train the de- detector cascade and = 3 or K = 4 pose classifiers for
tector using the Daimler Benchmark Datasets, and evaluatee semantic pose categories “facing left”, “facing right”
it on streams recorded in inner-city scenarios, as prelyous‘front/back view”. Based on the continuous outputs of the
described. The detection thresholds are set so that thensystclassifiers, decisions are taken as described in Sec. 1I-B.2
provides no false positives on the streams we used, wesed evaluated as detailed in Sec. 1I-C.4.
only one pedestrian is present. We perform non-maximal It is noteworthy that, due to the use of GPU techniques, the
suppression to obtain one detection per image. combined pedestrian detection and pose classificatiorrayst

We propose two simple evaluation measures to estimasehieves a frame rate of 20Hz using an off-the shelf graphics
the quality of the pedestrian detection. For the first onesard (nVIDIA GeForce FX 570) and a standard 2GHz, 4 core
we count all the images where a pedestrian is detected, aR@ running Linux, in the conditions presented in Sec. II-A.
divide by the amount of images where a pedestrian appegf.

For the second one, we start counting the detections ‘at ] ) S ) )
the first detection of a pedestrian, and finish the counting at Even if the pedestrian detection is not the main topic
the last detection, which gives us the amount of detectéd this paper, it is important to present its performance, as
pedestrians in the range of the detection algorithm. W€ pose classification is based on images provided by this
obtain a quantity of detected pedestrians in the range 8yStem. We do this using the parking lot-scenes presented
the detection algorithm by dividing the amount of detected? Sec. 11-C.1 which are used to train and evaluate pose

pedestrian in the range of the detection algorithm by th@@ssification. _ _
amount of images where a pedestrian appear. We train the detector using the Daimler Benchmark

4) Evaluation of pose classification As we recorded a Datasets, and we evaluate its performance on streams
set of videos containing only one pedestrian for trainingecorded in parking lot-scenes, using evaluation measures
and evaluation purposes, we can use a modified version @§sScribed in Sec. 1I-C.3. We can then verify if our approach
the N-fold cross-validation approach. We isolate one videl§ Portable to other technical settings, as the cameras used
containing one pedestrian, and train our pose classifiers 8 NOt the same. Moreover, we can verify if the approach is
all the other video sequences. Then we use the trained systible relative to the driving environment, which were not
to evaluate the pose classification using the isolated videdhe same in the Daimler datasets and in or own datasets.

We repeat this procedure, which is analogous to leave-one-If We take into account all the images where a pedestrian
out cross-validation, for every pedestrian instance @jde aPPear, the detection system detects_38% of the peplestnans
and evaluate all the results. This procedure allows us fdOWever, once a maximal-suppression algorithm is used,
thoroughly test and train on the whole dataset, withouirtgst it makes no false positive detections, which means that
on data which has been used to train the classifiers. it does not detect a pedestrian where there is none. This

We obtain a set of classifier outputs and labels that wifietector is really selective in order to minimize the amount

be used to evaluate the quality of the pose classification. ff incorrect detections that will be send to the pose classifi
order to evaluate the pedestrian pose classifier, we use tit¢ drawback being that it does not have a high detection
measures to estimate the quality of the system. rate. Another explanation for this low detection rate isttha

On the one hand we plot the misclassifications (exanY‘-’hen a pedestrian is too far away, he is out of range for the

ples that were not classified correctly) depending on tHdetector Which works on im_age patches _of a certa_in size. If
percentage of discarded images. This percentage depem%start counting the detection from the first detection & th
on the threshold as can be seen in Egn. 1. This p|0t|ast detection, which means if we focus our evaluation on

will represent the possible compromise that can be fourfd€ valid range, we attain a performance of 85% pedestrians

between the quality of the classifier (a low percentage orrectly detected. _ _
misclassification) and the selectivity of the classifier ighh VW& can conclude by saying that once the pedestrian enters
amount of discarded examples). the range of detection, it is successfully detected. Alke, t

On the other hand, after the selection of a suitable thresF2N9€ can be increased by using cameras of better quality
old 6, we can present the results as a confusion mafgix and smaller detection Wlnd_ows. Given t_h_e f_act that we
currently perform the detection and classification at 20Hz,
cij = #(pose=i,c = j) 1. (4) using standard hardware, it is reasonable to think that we
#(pose=1i) ' can maintain a real-time capable system while improving
This represents the result of the classification for indieid the range of detection. _ _
classes. It helps us identify which classes are recognizedUSing the pedestrian detection system, we provide the
easily, and which ones are too similar to be discerned.  following pedestrian images to the pose classifier:
« 1665 pedestrians “facing right”
[ll. EXPERIMENTS « 7258 pedestrians “front view”
All experiments are conducted using the HOG feature « 1307 pedestrians “facing left”
representation (see Sec. II-A) of the databases described i + 3933 pedestrians “back view”
Sec. II-C.1, either for training for testing purposes. lgsin These images are not filtered by non-maximal suppression
the techniques described in 1I-C.2, we train the pedestrialgorithm, so one pedestrian in one image can be detected

Pedestrian detection performance




multiple time by the SVMs and multiple example of theC. Pose classification with 3 categories

same pedestrian can be send to be classified by the systemy, this experiment, we train and evaluate pose classifica-
in order to evaluate their pose. tion performance similarly to I1I-B, except that we group
B. Pose classification with 4 categories the “front view” and “back view” classes together. Examples

are visually really similar, so it tends to merge these poses

In this experiment, we train and evaluate pose classi o : o
. . . ) together. Additionally, if we focus on applications for sBf
cation performance in the real-time system using the d‘fjlsastems detecting the difference between a pedestriamgfac
described in Sec. II-C.1. We usE = 4 pose categories y ’ g P

namely “facing left’, “facing right”, “front view” and “bak front and a pedestrian facing right is not so important,

- LS . because most dangerous situations come from pedestrians
view". Training is conducted on all of the pedestrian ex- L . . . Al m e

. .crgssing in front of the vehicle, involving the “left” and
amples apart from one pedestrian sequence, as EXplamﬁght" poses

in Sec. II-C.4. The pedestrian images are extracted by the . e
. : X The result of the pedestrian pose classification can be seen
pedestrian detection module of the real-time system when . . . .
. ) - in Fig. 6. With no discarding of example, we reach 91% of
running on the video sequences. The remaining examples are

e : gses correctly classified. So by grouping together frodt an
used to benchmark pose classification performance using the . . .
ack views of the pedestrian, we improved the score of the
measures of Sec. II-C.4.

The effect of discarding examples can be seen in Fig. front/back detector. We redefined our problem to improve

With no discarding of example, we reach 71% of posets e discriminative power of the classifiers.

correctly classified.

0.3 v v
Result for 3 classes
0.3 v v
Result for 4 classes 0.25 f
| 02t
2
0.2 F <
5 0.15 f
2 =
< )
= 0 !
5]
0.1F 0.05 b
0.05 | 0 ‘J

0 20 40 60 80 100
percentage of discarded samples

0 20 40 60 80 100
percentage of discarded samples Fig. 6. Results for the pose classification using 3 classesral pose
classification error depending on the applied thresttold
Fig. 4. Results for the pose classificatiqn using 4 classesrdl pose
classification error depending on the applied thresttold In order to have a good class-by—class quality estimate,
. : we provide once again the confusion matrix of the classifier
In order to have a good class-by-class quality estimate, we : I i
. . . A IN Fig. 7. We can once again observe the gain in quality by
provide the confusion matrix of the classifier in Fig. 5. In

. N . merging “front view” and “back view” classes.
order to have a fair estimation of the quality of the system, ging

we did not discard any unreliable prediction. All examples

Predicted Classes

are classified and evaluated. 5020 5
Predicted Classeg Real| 3 97 0
60 10 23 7 class| 13 5 84
Real| 5 83 0 12 Fig. 7. Experimental results of pose classification usingSepcategories.
class| 13 5 82 0 From left column to right column (or first row to last row), tisategories
are “facing right”, “front or back view” and “facing left” (fie results in the
10 37 0 >3 last row do not add up to 100 because of rounding errors).

Fig. 5. Experimental results of pose classification usingdepcategories.
From left column to right column (or first row to last row), tisategories The “front/back view” classification performs better com-

are “facing right”, “front view", “facing left’, *back view. pared to the classification with 4 poses. There are still
confusions between the “facing right” and the “facing left”

We can see that the pose classifier does not discrimingigses. We will discuss possible approaches to improve this
well between front and back view, because they are visualpasyit in Sec.V.

similar. Also, the main cause of misclassification for the

left or the right classifiers are their geometric counterpar IV. DISCussION

(respectively right and left). In the following section, wl In this contribution, we presented a pedestrian detection
group together the “front view” and “back view” classes. and pose classification system implemented on a Graphical



Processing Unit (GPU). It allows the system to perform irtlists and cars), in multiple driving environments (inrogs,
real-time using standard hardware. The detection and clastal road and highway), using different detection devices

sification are done using Histograms of Oriented Gradients
(HOG) features fed to a cascade of linear and non-linear
Support Vector Machines. (1]

We presented a pedestrian pose classification which uses
the same features as the pedestrian detection. Consgquentb)
we reduce the computational power needed for our system.
We showed that by selecting the right amount of classes, Wi
can tremendously improve the quality of the classification.
By grouping together classes that are visually similar,levhi [4]
maintaining the relevance of the class for safety appticati
we can estimate the pose of a pedestrian based solely on ther
visual appearance.

Of course, these results are not final. The system doe[g]
not perfectly distinguish the left and right classes yetisTh
can be explained by the fact that they were far less data tg
train the “facing right” (1665 examples) and “facing left”
(1307 examples) classes compared to the data available to
train the “front/back view” (11191 examples) class. Anathe [8l
reason explaining why the results can be improved is the
fact that we do not perform non-maxima suppression aftefo)
the detection stage, so even detections with low confidence
are used for training and testing the pose classification.

V. FUTURE WORKS [11]

Numerous possibilities exist to improve the current system
and to use it for Advanced Driving Assistance Systenm2)
applications. In this last section, we will propose several
implementations that we plan to incorporate in our systerﬂ3]
in the following months.

First, it is obvious that we have to make use of the
temporal consistency of the data to improve the detection. a4
the one hand, if a pedestrian is tracked in a video sequence,
his pose can also be tracked. Moreover, if he is moving, tH&5]
direction of the pedestrian can be a good estimate of his pose
Not only can it be used to improve the pose classification, but
it can also help to generate additional training data. Iddeel16]
the detection system currently misses 15% of the pedestrian
within the range of detection, which can be recovered using
tracking. On the other hand, if a pedestrian is detected afd]
his pose is estimated, this pose can serve as a prior for the
next detection. One of our point of interest is to explore ifig]
pedestrian pose classification and tracking can benefit from
each other. o 9]

Secondly, we want to explore the possibility of pedestrian
behavior prediction using the pose estimation (improved b
a possible tracking) and other scene elements. For exampfe,
the position and the pose of a pedestrian relative to the road
holds a lot of information about what he will possibly dol21]
in the near future. Related to this possible orientationwf o
work, we plan to explore the possible optimization of our22]
system exploiting the fact that pedestrian can only be found
at certain locations in the driving scene. (23]

Finally, we plan to apply our detection and pose estimation
to other traffic participants. We want to estimate the sdhlab
ity of our approach to multiple detections (pedestriansy-bi

] T. Gandhi and M. Trivedi.
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