
1

Biologically inspired incremental learning for
high-dimensional spaces

Alexander Gepperth, Thomas Hecht, Mathieu Lefort ENSTA ParisTech/UIIS lab
828 Boulevard des Maréchaux, 91762 Palaiseau, France and

INRIA FLOWERS
200 avenue de la Vieille Tour, 33405 Talence Cedex

Ursula Körner Honda Research Institute Europe GmbH
Carl-Legien-Str.30, 73076 Offenbach am Main, Germany

Abstract—We propose an incremental, highly parallelizable,
and constant-time complexity neural learning architecture for
multi-class classification (and regression) problems that remains
resource-efficient even when the number of input dimensions
is very high (≥ 1000). This so-called projection-prediction
(PROPRE) architecture is strongly inspired by biological infor-
mation processing in that it uses a prototype-based, topologically
organized hidden layer trained with the SOM learning rule
that updates hidden layer weights whenever an error occurs.
The SOM learning adapts only the weights of localized neural
sub-populations that are similar to the input, which explicitly
avoids the catastrophic forgetting effect of MLPs in case new
input statistics are presented. The readout layer applies linear
regression to hidden layer activities subjected to a transfer
function, making the whole system capable of representing
strongly non-linear decision boundaries. The resource-efficiency
of the algorithm stems from the fact of approximating similarity
in the input space by proximity in the SOM layer due to the
topological SOM projection property. This avoids the storage of
inter-cluster distances (quadratic in number of hidden layer) or
input space covariance matrices (quadratic in input dimensions)
as K-means, RBF or LWPR would have to do. Tests on the
popular MNIST handwritten digit benchmark show that the
algorithm compares favorably to state-of-the-art results, and
parallelizability is demonstrated by analyzing the efficiency of
a parallel GPU implementation of the architecture.

I. INTRODUCTION

Incremental learning remains a challenging issue in ma-
chine learning. While it is almost self-evident to biologists
that learning should be incremental, the technical realization
presents baffling difficulties. First of all, incremental learning
is inherently sub-optimal when it comes to optimizing an
objective (or loss) function. As one can never assume to have
seen all training samples at any single point during training,
optimization can only take into account the examples seen up
to the present moment. Furthermore, the statistics of input-
output relations are usually not homogeneous for any finite
dataset, so incremental learning must essentially assume non-
stationary input statistics at some time scale, which raises the
question of how to fuse already learned aspects of a task,
without destroying them, with new ones. The latter issue is
a real problem for connectionist models of learning [1] and
has been termed ”catastrophic forgetting”, and it is clear that
any feasible incremental learning algorithm needs to avoid this
issue.

a) Biological foundations and computational modeling:
As biological incremental learning has reached a high de-
gree of perfection, we explicitly investigated the biological
literature for hints as how to this might be achieved. Basing
ourselves on observations from the basic sensory cortices, we
noted that sensory representations seem to be prototype-based,
where prototype-sensitive neurons are topologically arranged
by similarity [2], [3], [4], [5]. Learning seems to act on these
representations in a task-specific way, where more prototypes
are allocated to sensory regions where finer discrimination
is necessary [6], i.e., where more errors occur during learn-
ing. Learning is conceivably enhanced through acetylcholine
release in case of task failures [7], [8], leading to higher
”prototype density” in difficult regions of the sensory space.
In particular, learning seems to respect and even generate
topological layout of prototypes by changing only a small
subset of neural selectivities [9] at each learning event, namely
around those neurons that best matched the presented stimulus
[5].

We model these findings by using a self-organizing map
(SOM) learning to shape the feature preferences of hidden
layer neurons in our architecture. SOM is a prototype-based
algorithm in the sense that the hidden layer weight vectors
”live” in the space of inputs in the sense that they are as
close as possible to actually occurring inputs according to the
SOM energy function (we use a slightly modified SOM model,
see[10] that has such a globally decreasing energy function,
in contrast to the original model). We model the global, task-
related error signal by the current classification error that
activates SOM learning in case of mismatch. As SOM learning
attributes more prototypes to regions where many learning
events occur, this will ensure that prototype density increases
in difficult regions of the input space. Furthermore, SOM
adaptation is stably self-terminating since no more learning
will occur when no more errors are made. Inversely, when
error rates increase due to the presentation of new input
statistics, the hidden layer representation will become plastic
until error rates subside again, when a sufficient re-adaptation
has been achieved. Thus, the hidden layer represents no longer
a pure data distribution but a data distribution modulated by
task demands. Lastly, SOM produces a topologically organized
representation of the input space, which was the reason to
formulate the model in the first place, and modifies weights



2

� �

��� �����	

	�
	������

����	�
�����	�

��������
	�	��������������

����
�	�
�����	


	������	���
�����	

�����������
���������

�������������

Fig. 1. Schema of the three-layer PROPRE architecture composed of input,
induced and output representations. Initially there is a forward transmission
step, propagating the information to the top-level of the hierarchy where it
is decided whether a correct result was obtained. In case it was not, SOM
weights are updated in the feedback step, thus leading to a representation of
difficult samples in N .

only locally in case of learning (as observed in biology).
Summarizing, we have tried to incorporate as many facts

about incremental learning in biology as possible while keep-
ing the model as simple and efficient as possible. Our modeling
takes place at the architectural level, leaving aside the finer
details of neural modeling (rate/spike code, dynamic neuron
models etc.).

b) Model properties: We propose a three-layer neural
model for incremental learning that contains a topologi-
cally organized representation of prototypes in its hidden
layer (termed ”induced representation”), trained by the self-
organized map (SOM) algorithm [11]. Due to the properties of
SOMs, learning is always strictly local in the sense that only
the prototypes that are similar to the best-matching one are
adapted, thus avoiding catastrophic forgetting. SOM learning
is activated by adverse task performance, which conversely
means that learning stops once the task is acquired, thus
maintaining long-term stability. Classification is performed
by simple linear regression from the hidden layer towards a
population-coded target vector after first applying a non-linear
transfer function to all hidden layer activities.

c) Related work: Incremental learning algorithms are
especially interesting for robotics applications [12], and in
fact several very interesting proposals have already been
made in this context [12]. An especially popular algorithm
in robotics is LWPR [13], which partitions the input spaces
into receptive fields (RFs), volumes that are defined by a
centroid and a covariance matrix, to which separate linear
models are applied. Many other incremental algorithms, re-
viewed in [12] partition the input space in a similar way.
Although LWPR (and similar approaches that partition the
input space) has been shown to be very powerful, it runs
into memory problems when the product of input and output
dimensionalities K,P becomes large (e.g., ≥ 10000). This is
because each RF requires the storage of a covariance matrix
of dimensionality K2, and RFs are created independently for
each output dimension, thus giving a total memory complexity
of K2P . This makes LWPR rather unsuited for problems
with high input and output dimensionalities. On the other
hand, RBF approaches are conceptually very close to ours
in that they perform a projection onto a set of prototypes,
followed by linear regression. However, incremental learning

capacity is lacking on most of these models because the cluster
centers (”prototypes” in our architecture) are fixed in advance,
based on training data. Furthermore, RBF approaches have no
notion of topology preservation when creating cluster centers;
whereas our approach essentially amounts to clustering as
well, the topology preserving properties of the self-organizing
map model are used to approximate input space distances by
distances in the projected space, which allows for efficient
incremental learning.

d) Contribution of this article: In this article, we will
propose a model for incremental learning that can cope with
scenarios where KM ∼ 10000 (K,M denoting input/output
dimensionality) and beyond, and evaluate its performance
on the well-known MNIST benchmark [14]. We explicitly
evaluates the incremental aspect of learning by training on
a subset of MNIST classes and subsequently adding the
remaining classes. The key idea of our approach is to approx-
imate distances in the high-dimensional input space by grid
distances in the projected input space (the hidden layer of our
architecture) which is a key property of the SOM algorithm
we employ for this purpose. In this way, learning can be fully
incremental by restricting weight changes to a small hyper-
volume around the current input without having to store RF
centers and covariance matrices. Furthermore, the architecture
we present has constant time complexity and is fully and
naturally parallelizable, which we demonstrate by execution
speed measurements using a separate GPU implementation1.

II. METHODS

A. The PROPRE architecture

PROPRE is an architecture composed of different algorith-
mic modules, rather than an algorithm in itself. One PROPRE
iteration consists of the following steps, as described in [15],
where only the computation of the predictability measure λ is
changed to represent the current binary classification error:
input: new data is fed into the input representation I and
provided to the SOM, and a new target representation T
is provided projection: activity is formed in the induced
representation N (see Fig. 1) by projection of I onto the SOM
prototypes prediction: based on activity in N , a linear re-
gression step is performed to produce representation P which
predicts class membership evaluation: a mismatch measure is
computed between P and T update: linear regression weights
are updated. SOM weights are updated only if mismatch was
detected. In mathematical terms, the whole model is governed
by the following equations, where we denote neural activity
at position ~y = (a, b) in a 2D representation X by zX(~y, t)
and weight matrices for SOM and LR, represented by their

1All simulation code will be made available for download



3

line vectors attached to target position y = (a, b) by wSOM
~y :

z̃N (~y, t) =
∣∣wSOM
~y (t)− zI(t)

∣∣ (1)

z̄N (~y, t) = gκ
(
z̃N

)
zN (~y, t) = TF

(
z̄N (~y, t)

)
zP (~y, t) = wLR

~y (t) · TF
(
zN (t)

)
λ(t) = 0 if argmax~yz

P (~y, t) = argmax~yz
T (~y, t)

1 else

wLR
~y (t+ 1) = wLR

~y (t) + 2εLRzI(t)
(
zP (t)− zT (t)

)
wSOM
~y (t+ 1) = wSOM

~y (t) + λ(t)εSOMgσ(~y − ~y∗)(zI − wSOM
~y )

κ(t+ 1) = 0.999 κ(t) + 0.001 max~y z̃N (~y, t)

where gs(x) is a zero-mean Gaussian function with standard
deviation s and ~y∗ denotes the position of the best-matching
unit (the one with the highest activity) in N . In accordance
with standard SOM training practices, the SOM learning rate
and radius, εSOM and σ, start at ε0, σ0 and are exponentially
decreased in order to attain their long-term values ε∞, σ∞ at
t = Tconv. In order to convert euclidean distance between a
prototype vector and the input into a similarity score in the
interval [0, 1], we pass the ”naked” distances z̃N through a
zero-mean Gaussian function with a standard deviation κ(t)
that adapts to the average maximal distance found in the whole
induced representation. This amounts to determining, over
time, the expected maximal distance to which a small score
should be assigned, whereas the highest score would always
be assigned to a distance of 0. TF represents a monotonous
non-linear transfer function, TF : [0, 1] → [0, 1] which we
model as follows with the goal of maintaining the BMU value
unchanged while gradually and nonlinearly suppressing all
other values:

m0 = max~y z̄N (~y, t)

m1 = max~y
(
z̄N (~y, t)

)20

TF
(
(z̄N (~y)

)
= m0

(
zN (~y)

)20

m1
(2)

A softmax function would have done the trick as well, but we
avoid this in order not to calculate too many exponentials.

B. The MNIST handwritten digit database

For all experiments, we use he publicly available MNIST
classification benchmark as described in [14]. It contains
10 classes, corresponding to the 10 handwritten digits from
”0” to ”9”, see also Fig. 1, and comes separated into a
well-defined train set and a smaller test set. Each sample
has a dimensionality of K = 28 × 28 = 784. From the
MNIST benchmark, we extract several subsets of classes: D0̄

containing the digits from 1 to 9, and D0 containing just the
digit ”0”. Analogously, we create D1̄, D2̄, D1 and D2. Each
set Dx is again split into training and test sets Dtrain

x , Dtest
x

to measure generalization performance, the split being made
according to whether a certain sample belongs to the MNIST
train or test set. For training and evaluating performance on all
digits, we also create the sets Dtrain

0−9, Dtest
0−9 which correspond

to the original MNIST train and test sets.

PPPPPPn
ε∞ 2 1 0.5 0.1 0.05

10 32.9 17.9 10.3 8.5 8.6
20 17.0 10.0 6.3 5.5 5.4
30 12.8 7.2 5.5 4.8 4.8
50 7.9 5.4 4.8 4.4 4.6

TABLE I
BASELINE NON-INCREMENTAL PERFORMANCE EVALUATION OF PROPRE
ON MNIST DATA WHILE VARYING THE MINIMAL SOM NEIGHBOURHOOD
RADIUS AND THE HIDDEN LAYER SIZE. GIVEN ARE THE ERRORS ON THE

MNIST TEST SET IN PERCENT.

III. EXPERIMENTS

We use the following fixed parameters for PROPRE: εLR =
0.001, ε0 = 0.5, σ0 = 0.3n, T1 = 50000, Tconv = 100000,
ε∞ = 0.001 and σ∞ = 0.5. Both SOM and LR weight
matrices are initialized to random uniform values between
-0.001 and 0.001. No preprocessing is performed on the
28x28-dimensional MNIST input vectors. Training examples
are always randomly and uniformly drawn from the current
training set.

A. Baseline performance measurement

In order to establish a baseline performance that demon-
strates the principal capability of the PROPRE architecture
to solve the classification problem posed by MNIST, we first
train and evaluate the PROPRE architecture for 106 iterations
on D0−9. Modulation of SOM learning is turned off by setting
λ(t) ≡ 1 in eqns.(1) as this is not in incremental learning task.
The performance thus obtained is to be compared to offline,
batch-type algorithms. In the case of PROPRE, this would be
other three-layer architectures such as multilayer perceptron
or RBF networks. In particular, a goal of this experiment is
to find a value of ε∞ that will give maximal performance
in this non-incremental setting. This is an important point
as the capacity of the hidden layer to represent inputs as
closely as possible is intimately tied to this parameter: the
smaller it is, the smaller will be the average prototype-input
distance expressed by the similarity score of the BMU, and
it can be reasonably speculated that this is in turn related to
classification performance of the linear regression readout. We
will at the same time vary the hidden layer size n2, again with
the goal of maximizing classification performance, where it is
again reasonable to suppose that bigger hidden layers will give
better classification as the inputs can be approximated with a
higher overall resolution.

The results of this set of experiments are summarized in
Table I. The show mainly two things:
• Smaller ε∞ leads to better classification performance
• Bigger hidden layer sizes lead to better classification

performance
Especially the latter result, while not really surprising, is
interesting, as it suggests that in the case of the PROPRE
architecture, we do not suffer from the problem of choosing
a correct hidden layer size as in the case of multilayer per-
ceptrons (MLPs). As the hidden layer projections are shaped
by an energy-based variant of the generative SOM learning



4

hhhhhhhhhhhhhtest dataset
train dataset Dtrain

x Dtrain
0 Dtrain

1 Dtrain
2

Dtest
x̄ at t = 300.000 5.95 6.11 5.75

Dtest
x at t = 350.000 3.57 0.96 6.5

Dtest
x̄ at t = 350.000 6.41 6.75 6.19

Dtest
0−9 at t = 350.000 5.82 (4.8) 5.96 (4.8) 6.21 (4.8)

TABLE II
INCREMENTAL LEARNING PERFORMANCES WHEN TRAINING ON 9 MNIST

CLASSES AND ADDING THE REMAINING ONE AFTERWARDS, FOR THREE
DIFFERENT CHOICES OF THE LATTER, NAMELY ”0”, ”1” AND ”2”. FOR

EACH CHOICE OF RETRAINING DATASET DTRAIN
x , ACCURACY IS MEASURED

FOR THREE DIFFERENT TEST SETS: DTEST
x , DTEST

x̄ AND DTEST
0−9 . FOR THE

LATTER, THE FIGURE IN PARENTHESES IS THE BASELINE PERFORMANCE,
THAT IS, FOR THE CASE OF NON-INCREMENTAL LEARNING.

algorithm, it is intuitively clear that having more prototypes
implies a more precise representation of inputs which in turn
favors classification performance. As a last point, we found,
again not very surprisingly, that the application of a non-
linear transfer function to the SOM similarity scores computed
according to Sec. II-A is essential for acceptable performance.
With purely linear transfer functions, performance drops of
more than 10% occur where precise figures depend on hidden
layer size n2.

B. Incremental learning performance

We conduct several experiments designed to measure the
capability to perform incremental learning. To this effect, we
let the architecture converge on the datasets Dtrain

0̄
, Dtrain

1̄
or

Dtrain
2̄

for 300.000 iterations, keeping all timing parameters like
T1 and Tconv unchanged from the baseline experiment, and
performing the same reduction of learning rates and neigh-
bourhood radius. The modulation factor is kept at λ(t) ≡ 1
for t < 300.000 in order to have a defined starting point, and
is determined according to eqns.(1) for t ≥ 300.000. From
t = 300.000 onwards, we present one of the complementary
datasets Dtrain

0 , Dtrain
1 or Dtrain

2 for 20000 iterations, followed
by a phase of 30.000 iterations where SOM plasticity is turned
off (λ(t) ≡ 0) in order to let linear regression weights ”catch
up” with the changes to the hidden layer selectivities. At all
times, we can measure model performance on any of the
corresponding test sets.

e) Results: The numerical results of these experiments,
conducted for σinf = 0.05, are given in Tab. II. They clearly
show that incremental learning is successful, as the newly
added class is well learned while performance on the ”old”
classes is retained with little change, which is also reflected
in the fact that the overall error on Dtest

0−9 increases only
insignificantly. As all classes are present in equal frequency in
the MNIST benchmark, an inferior performance on the newly
added class could raise error rates by up to 10 percent which
is not observed.

We observe what happens when the modulation factor λ(t)
in eqns.(1) is kept fixed at lambda ≡ 1 meaning that the
SOM weights are updated at every iteration, regardless of
errors in classification. Although errors on the new class
drop very quickly, errors on the ”old” classes rise much
more quickly and unpleasantly than in the case where λ(t)
is determined from current classification accuracy according

PPPPPPtime
N 10x10 20x20 30x30 50x50

GPU 15 19 27 53
CPU 115 457 1037 2903

TABLE III
EXECUTION TIME MEASUREMENTS IN SECONDS PER 104 ITERATIONS OF
PROPRE FOR GPU AND CPU IMPLEMENTATIONS. IT CAN BE OBSERVE
THAT GPU EXECUTION TIMES SCALE (MUCH) LESS THAN LINEARLY IN
THE CONSIDERED RANGE OF HIDDEN LAYER SIZES, WHEREAS THE CPU

IMPLEMENTATION SCALES ALMOST EXACTLY IN A LINEAR FASHION.

to eqns.(1). This is because eqns.(1) update SOM weights
only when misclassifications occur, or conversely, do not adapt
anything when classifications are accurate. When presenting
a new class, initially all classifications will be incorrect and
strong adaptation occurs. After having learned a sufficiently
good representation in the hidden layer, adaptation of SOM
weights largely stops, which protects the old classes regardless
of how long the new class is actually presented. Briefly put,
the learning architecture we presents adapts its hidden layer
selectivities only as much as necessary and no more.

We furthermore observe that the value of σ∞ seems to
control the incremental learning capacity of the architecture:
if it is too large, adaptation is too fast and the old classes will
be completely overwritten before all samples of the new class
have even been fully presented. conversely, if it is too small,
changing input statistics are incorporated too slowly to play a
role within the considered 20.000 retraining iterations. This is
natural since the SOM algorithm guarantees a graceful decay
whose time scale is however controlled by σ∞. Fig. 2 shows
the effect of large, small and just correct values for σ∞.

C. Parallelization and complexity issues

Apart from the very favorable time and memory complexity
of the PROPRE architecture, all of its component parts can
be very efficiently parallelized. Here we focus predominantly
on the SOM layer as it produces the highest computational
burden. We can deduce from eqn. (1) that both the projection
as well as the weight adaptation part can be performed
in parallel for each output neuron. This is evident for the
projection step that produces zN , as well as for the weight
adaptation step that just makes use of the activities zN com-
puted during the projection step but not of the weight vectors
(SOM prototypes) of other hidden layer neurons. In fact, in
a parallel implementation we can go even further and stop
weight adaptation for a particular hidden layer neuron when it
is too far away from the best-matching unit (BMU), i.e., when
the neighbourhood function gσ falls below a certain threshold
for which we have taken a very conservative value of 10−2.
Since the weight change becomes negligible by multiplying
with the current learning rate (<< 1) this is a very justi-
fied approximation. For a purely CPU-based implementation
without parallelism, this enormously speeds up computations
when the neighbourhood radius has converged to its long-term
level of σ∞, as effectively only a very small fraction of the
total set of prototypes is adapted at each time step, namely
those that are very close to the BMU. For a parallel GPU
implementation, the benefit of this approximation depends



5

Fig. 2. Effect of incremental learning on SOM prototypes. Shown is a 30x30 grid of prototypes in the form of little images of size 28x28, the size of one
MNIST sample. Left: SOM converged on Dtrain

0̄
at t = 300.000, σ∞ = 0.05. The similarity-based ordering of prototypes in the typical fashion of a SOM

is well discernible. Middle: SOM with addition of the new class ”0” at t = 320.000. We can clearly observe that the new class is inserted into the SOM at
positions where it most closely matches existing prototypes (e.g., bottom left corner), and that prototypes dissimilar to the new ”0” class (e.g., class ”1” in
the upper right corner) are not affected at all. Right: SOM with addition of new class at t = 320.000, with a different value of σ∞ = 0.75. We observe that
insertions are now much more spatially organized by similarity, and that the prototypes representing the new ”0” class are much more frequent, showing that
more of the ”old” knowledge has been overwritten.

strongly on the actual way of distributing computations on the
available multiprocessors, but is less pronounced for modern
GPUs with high parallelism, because then each parallel process
computes very little (typically 1-2 additions) and the difference
of aborting or executing it is small.

The GPU implementation was done using CUDA on a
GeForce GTX 570 graphics card (a rather old model) on a
rather old computer (Pentium Quad-Core of 2GHz running
Linux). The actual implementation was performed in Python
using the pyCUDA library[16]. The reference implementation
was done in Python as well using the numpy library[17] which
is optimized for vectorization, so the approximation mentioned
above was not employed. Obtained execution times are sum-
marized in Tab. III. They show a very large performance
difference between CPU and GPU implementations, on the
one hand in absolute terms and on the other hand in terms
of scaling: whereas CPU execution times scale exactly with
the change in hidden layer size, the GPU execution times
grow much more slowly and allow therefore to simulate much
larger architectures. It is clear that this behavior will saturate
at some point, but as the whole point of this experiments was
to show to what extent and with what facility PROPRE can
be parallelized, this is not a crucial issue.

IV. DISCUSSION

f) Complexity: Incremental learning using the PROPRE
architecture comes at constant time complexity; this is in
contrast to conventional incremental learning algorithms such
as LWPR which allocate ”receptive fields” at runtime as
needed, and whose time complexity is linear in the number
of these structures. In a sense, PROPRE ”pre-allocates” a
certain number of ”receptive fields” and uses them as well
as it can, where having more receptive fields means better
classification accuracy. Denoting input dimensionality, hidden
layer size and output layer size (number of classes) by
K,N and P, the memory complexity of PROPRE is roughly

(KN +NP ) = N(K+P ) ≈ NK. For a pure RBF classifier
with N cluster centers, the memory complexity would be
N(K+P ) ≈ NK as well. However, if cluster centers should
need to be updated in an efficient fashion, it will be necessary
to store a matrix of inter-cluster distances so that each new
sample can update the clusters to which it is nearest in the
input space. This matrix will have N2 entries, making the total
memory complexity N(N +K +P ≈ N(N +K) which can
be formidable for a large number of clusters. For the LWPR
algorithm, the storage of receptive fields that are defined in the
input space requires approximately PN(K+4K2) ≈ 4PNK2

which becomes prohibitive for large input dimensionalities K.
The factor 4 in the last expression comes from the storage
of sufficient data statistics along with each receptive field as
detailed by [18].

g) Is this really incremental learning?: in this article,
we show how we can, in an additional training step, teach
new things to our architecture without forgetting too much of
previously learned knowledge. Where forgetting happens, it
has a certain graceful decay property that is characteristic for
the SOM model. However, in order to teach ”new tricks” to
the architecture, we perform a dedicated incremental learning
procedure that is different from the initial learning procedure:
fist, we present the new concept in the form of examples,
and perform a subsequent linear regression retraining where
SOM learning is deactivated. Each time something new (e.g., a
class) is added, this step has to be repeated. This does not pose
problems in practice, but from a conceptual point of view it
would be much more elegant to perform incremental learning
identically to the initial learning step. Already, the term
”incremental learning” is not well defined in the literature,
but if we stick to the terms defined in [12], we can say that
our method is incremental but not fully online.

h) Incremental vs. non-incremental performance: We
observe in all experiments that incremental learning incurs
a slight cost in the form of a departure from the non-



6

incremental version of the PROPRE architecture. This is not
very surprising, first of all as the online linear regression we
use to read out hidden layer activities may not yet be fully
converged, but mainly because the addition of a new class
to an already learned model is inherently sub-optimal (initial
learning does not know at all about the new classes).

i) Influence of σ∞: We found a strong impact of σ∞
on map formation in the hidden layer which in turn strongly
influences classification accuracy. As suggested by Fig. 2,
this parameter also governs the way incremental learning
adapts SOM prototypes. We believe that further work will be
necessary to elucidate the precise role of this parameter.

V. CONCLUSION

We have presented an algorithm for resource-efficient in-
cremental learning that draws its efficiency from principles of
biological information processing and showed that it can easily
handle data dimensionalities of 750 entries. We showed that
it compares favorably with the state-of-the-art on a standard
machine learning benchmark (MNIST) in its non-incremental
form, and that good classification accuracy persists when
training it incrementally by adding classes to a trained model
using the same benchmark. The algorithm is self-limiting and
destroys old knowledge only ”on demand”, due to misclassifi-
cations. Due to neural design principles, the whole architecture
can be very easily parallelized, obtaining performance gains
up to a factor of 8, along with a much nicer scaling behavior
when the hidden layer size is increased. Future work will
include ”deep” PROPRE architectures, namely investigating
how the incremental learning capacity can be maintained in
such an architecture, as well as efforts to make the PROPRE
architecture fully online, which means that training and re-
training steps should be conducted in the exact same fashion,
thus assuring maximal simplicity and applicability in many
different applied scenarios where autonomous, uncontrolled
learning is required.

REFERENCES

[1] Ian J Goodfellow, Mehdi Mirza, Xia Da, Aaron Courville, and Yoshua
Bengio. An empirical investigation of catastrophic forgeting in gradient-
based neural networks. arXiv preprint arXiv:1312.6211, 2013.

[2] Keiji Tanaka. Inferotemporal cortex and object vision. Annual review
of neuroscience, 19(1):109–139, 1996.

[3] David A Leopold, Igor V Bondar, and Martin A Giese. Norm-based
face encoding by single neurons in the monkey inferotemporal cortex.
Nature, 442(7102):572–575, 2006.

[4] David A Ross, Mickael Deroche, and Thomas J Palmeri. Not just the
norm: Exemplar-based models also predict face aftereffects. Psycho-
nomic bulletin & review, 21(1):47–70, 2014.

[5] Cynthia A Erickson, Bharathi Jagadeesh, and Robert Desimone. Clus-
tering of perirhinal neurons with similar properties following visual
experience in adult monkeys. Nature neuroscience, 3(11):1143–1148,
2000.

[6] Daniel B Polley, Elizabeth E Steinberg, and Michael M Merzenich.
Perceptual learning directs auditory cortical map reorganization through
top-down influences. The journal of neuroscience, 26(18):4970–4982,
2006.

[7] Norman M Weinberger. The nucleus basalis and memory codes:
Auditory cortical plasticity and the induction of specific, associative
behavioral memory. Neurobiology of Learning and Memory, 80(3):268
– 284, 2003. Acetylcholine: Cognitive and Brain Functions.

[8] Michael E Hasselmo. The role of acetylcholine in learning and memory.
Current opinion in neurobiology, 16(6):710–715, 2006.

[9] Edmund T Rolls, GC Baylis, ME Hasselmo, and V Nalwa. The effect of
learning on the face selective responses of neurons in the cortex in the
superior temporal sulcus of the monkey. Experimental Brain Research,
76(1):153–164, 1989.

[10] Tom Heskes. Energy functions for self-organizing maps. Kohonen maps,
pages 303–316, 1999.

[11] T Kohonen. Self-organized formation of topologically correct feature
maps. Biol. Cybernet., 43:59–69, 1982.

[12] Olivier Sigaud, Camille Salaün, and Vincent Padois. On-line regression
algorithms for learning mechanical models of robots: a survey. Robotics
and Autonomous Systems, 59(12):1115–1129, 2011.

[13] Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental
online learning in high dimensions. Neural computation, 17(12):2602–
2634, 2005.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Intelligent Signal Processing, pages
306–351. IEEE Press, 2001.

[15] A Gepperth. Efficient online bootstrapping of representations. Neural
Networks, 2012.

[16] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul
Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation. Parallel Computing,
38(3):157–174, 2012.

[17] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing in
Science & Engineering, 13(2), 2011.

[18] Sethu Vijayakumar Stefan Klanke and Stefan Schaal. A library for
locally weighted projection regression. Journal of Machine Learning
Research (JMLR), 9:623–626, 2008.


