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Abstract. We present a new self-organized neural model that we term ReST
(Resilient Self-organizing Tissue), ReST can be run as a convolutional neural
network (CNN), possesses a C° energy function as well as a probabilistic inter-
pretation of neural activities, which arises from the constraint of log-normal activ-
ity distribution over time that is enforced during learning. We discuss the advan-
tages of a C'* energy function and present experiments demonstrating the self-
organization and self-adaptation capabilities of ReST. In addition, we provide a
performance benchmark for the publicly available TensorFlow-implementation.
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1 Introduction

This article is in the context of self-organized map (SOM) models that have a continuous
energy function. The lack of such an energy function for the original SOM model [7] has
been the subject of many articles [2,11]. As it was shown that the original SOM learning
rule cannot be derived from a continuous energy function [2], several proposals were
made to remedy this problem [6,4]. In general, one may cite the following advantages
of energy-based SOM models:

— Estimation of learning success and parameter selection A big issue for SOMs is
to know whether the model has converged to a ’desirable” state. For problems that
do not allow a visual quality inspection, there is no universal criterion to determine
optimal values for the model parameters (final neighbourhood radius, final learning
rate etc.), whereas an energy function provides a simple quality measure.

— Proof of stability If a continuous energy function exists and is bounded from be-
low, this automatically guarantees the eventual convergence of SOM learning.

— Use of advanced stochastic gradient descent methods With a continuous energy
function, many widely-used methods for performing stochastic gradient descent
(SGD) in the domain of deep learning can be transferred to SOM learning.

— Outlier detection A sudden increase of energy (which is supposed to be minimized
by learning) is a strong indication for a change in data statistics and can thus be used
for outlier or concept drift detection. The latter property is especially relevant for
our own ongoing work on incremental learning methods[3].
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1.1 Related work on energy-based SOM models

There has been a huge amount of primarily mathematical literature about It was shown
conclusively in [2] that the original Kohonen learning rule cannot be exactly derived
from the minimization of any error function. In the same article, it is mentioned that
the Kohonen learning rule follows instead from the individual minimization of per-
neuron energy functions [11], but these functions are very complex, non-unique and
do not lend themselves to a simple interpretation (e.g., minimization of a distortion
measure or similar). Another approach was proposed by Kohonen[7] and taken further
by Heskes[6]: instead of finding error functions whose minimization would lead to the
Kohonen learning rule, these authors attempted to very slightly modify the Kohonen
rule itself. Obviously, the modification should in no way impair the self-organization
capabilities of the model while allowing an intuitive interpretation through a (preferably
simple) energy function. An modification satisfying these requirements was proposed
in [6,5], offering a continuous energy function for discrete as well as continuous data
distributions. While this was an important theoretical result, there was no real follow-
up in terms of applications in data visualization and/or clustering.It may be supposed
that this lack of interest was due to the added computational complexity (an additional
convolution needs to be calculated), as well as the problems that convolutions encounter
at boundaries. Similar SOM variants having an energy function were proposed in [4]
but they suffer from the same ”convolution problem”.

2 Methods and data

In all experiments, we use the ReST model as described in Sec. 2.1, together with the
MNIST dataset described in Sec. 2.2.

2.1 The ReST model

We assume a dataset (or a mini-batch) of input vectors x,, € R* and a two-dimensional
set of K x K neurons with non-negative activities a; > 0,4 = 1..., K2.Itis convenient
to express activities computed for an input x,, as a one-dimensional vector a,, € R¥ .
A neuron with (linear) index i and coordinates x;, y; has an associated prototype p; €
RF,i=1,..., K2, as well as an K x K neighbourhood matrix that we write as a one-
dimensional vector g; € RE *in analogy to the vector of activities. Differing from the
SOM model, each neuron possesses two internal variables o; and s; that play a role in
enforcing log-normal statistics for the activities a,, which are computed as:

dni = \/(pi — @n)° (1
Gni = 05 — Silnp; 2)
Api = €xp (Gni) - ©)
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The adaptation of the prototypes p; is now achieved by minimizing the energy function
Ccni = (gi,log an) = (gi, @n) @

1
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The first equation essentially represents a convolution operation as the per-neuron vec-
tors g; are (for self-organized models) represented by Gaussians centered on neuron
1. Generally, one assumes such Gaussians to be periodic where they exceed the map
boundaries (for neurons that are close to these boundaries). The logarithm and the
vector-valued softmax function S(v) in eqn.(4) are applied in a component-wise fash-
ion as

e; = exp(fv;) (6)
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[ being a parameter that controls the selectivity of the softmax: for higher 5 values, the
output S(v) will tend to be more strongly peaked, the maximal value closer to 1.0 and
the rest to 0.0. For lower 3 values, this relationship is inversed. The minimization of
the energy function is performed as a constrained optimization problem, the constraint
being that the temporal distribution of activities a,, is log-normal with parameters p
and o. This implies that log a,, (with logarithm applied component-wise!) is normally
distributed, with the empirical mean and standard deviation i, & coinciding with p, o:

%Zlogani = %Z&ni ; W (8)

\/Jbzn:(logaiﬂf\/;;(&iﬂf!g )

From these requirements, the per-neuron parameters o; and s; can be determined un-
ambiguously from the first two moments of the input-prototype distances

fi

4

Si =\ | = — (10)

0 = p+ sid, (an

which can be computed empirically over a dataset of N samples:
— 1
@:Ng%i (12)
J2 1 2
d; = N Z A

In a mini-batch setting, we instead take averages over the current mini-batch of N
samples (the extreme case being fully online learning where N = 1). If we wish to
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compute the averages d; and d? over periods longer than the mini-batch size N, we
replace eqns.(12) by exponential smoothing of mini-batches averages:

di(v) = (1= agN)di(v = 1)+ ag Y dp; (13)

n

Bw)=1—agN)dZ(v—1)+aqy_d2 (14)

n

where variable v expresses the number of the current mini-batch. We scale the adapta-
tion rate ag < 1 with the mini-batch size N since a larger N implies that more samples
are used per step in eqn.(13), and thus adaptation can proceed more quickly. Please note
that by setting oy = 0 we can turn off the moving average mechanism. In this case only
the current mini-batch is considered, as it is the case in eqn.(12).

ReST learning rule For performing gradient descent for the energy function of eqn.(4),
we take its derivative w.r.t. to the k-th element of prototype ¢:

o = 8pim%_jcnﬁ(c>m = (15)
o 1 .8an . o )
) (Stens 52 4 85(e,)s (65 - S(e)) a0
1 OCps
~ N2 T "

where we have used the expression 0;5; = (5;(d;; — S;) for the derivative of the
softmax function. If we assume that the softmax function puts 1.0 at the position of the
maximal value (whose index is expressed by *), and O everywhere else, we obtain the
approximation result of eqn.(17) and arrive at the update rule

€5iFxi Pi — In
P < pi + (18)
2N zn: |pi — |

where we have one more time designed the index of the best-matching unit (BMU) by
a star: x = arg max;c;. If we had omitted the square root in the definition of input-
prototype distances in eqn. (1), we would have arrived at the equivalent rule

p; < p; + 765;3*2 zﬂ: (pi — ) (19)
which differs (for the online case of N = 1) from the energy-based SOM model pro-
posed in [6] only by a factor of s; for each neuron, an additional difference to [8] being
that BMU is not determined from input-prototype distances but from the convolution
c of activities with the neighbourhood matrix, see eqn. (4). We observe that the learn-
ing rules (18,19) scale each neuron’s prototype adaptation by a factor which is, by eqn.
(10), inversely proportional to the activity variance of that neuron. Thus, neurons whose
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prototypes are either too unspecific or too generic (resulting in uniformly low or high
activations with low variance) receive a competitive advantage. This mechanism is self-
limiting: increased prototype adaptation usually increases the variance of a neuron’s
activities, thus eventually annulling the competitive advantage and leading to stable
competitive learning dynamics.

Implementation of constrained optimization Minimizing the energy function (4) is
performed by performing repeated gradient descent steps using learning rule (18) on
the whole available training data set or mini-batch, each step followed by an explicit
enforcement of the constraints by applying eqn. (10), this again being followed by an
update of the averages using eqn.(12). For speeding up convergence, the neighbourhood
matrix g; of neuron ¢ is modelled as a Gaussian whose standard deviation S(v) is
decayed exponentially over time, as it is usual with SOMs:

gij = exp < (&5 - xl;;z;)(g] — yi)Z)

In contrast to normal SOM learning, we do not decay the ReST learning rate v over
time, since this complicates advanced gradient descent strategies and introduces unnec-
essary parameters. Additionally, we impose an initial period without prototype adapta-
tion where only neural statistics are adapted. This allows ”adiabatic” prototype updates,
causing only small corrections to the already converged o; and s;, which avoids poten-
tially problematic feedback loops between the two adaptation processes. The training
procedure, as well as all relevant parameters, is detailed in Alg. 1

(20)

Choice of ReST parameters The self-adaptation process is governed by the param-
eters 1 and o of the log-normal distribution that the activities a; are required to obey,
which raises the question of what their intrinsic significance could be, especially within
the context of self-organizing maps and incremental learning. First of all, from the prop-
erties of log-normal distributions we know that the quantity e” represents both the geo-
metric mean and at the same time the median of a log-normally distributed variable, so
essentially we could just fix a median value M and compute p = log M from it. The
median for this distribution is smaller but usually close to the arithmetic mean as well
so we can also see M as a rough indicator for the arithmetic time average of a neuron’s
activity. The quantity e? is sometimes termed the geometric standard deviation and can
be expressed as

¢ = e W}VZ (o)) -
_ f{/ﬂn exp ((log )2) - EZ\/exp ((1og ‘Zgj

and is thus related to the geometric mean of the expression 4 /exp ((log

QAnj
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)*). This

expresses the multiplicative spread of values around their empirical geometric mean

Ani
el
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Algorithm: Constrained ReST optimization

Parameters :

— nr of iterations T’

— mini-batch size N

— initial and final neigh. radius So, S
— learning rate «

— self-adaptation rate aq

— time parameters t 4, to and too

— target values o, u for self-adaptation

Result: trained prototypes p;

begin

Initialize all prototypes p; to small random values ;
Initialize moving averages d;(0) = O and d = 0 ;
Initialize per-neuron parameters s; = 0.5, 0, = 0;

_ log(=S5c0/S0) .

Compute decay time constant A = o

for mini-batch v < T do

compute nb.radius S(v) and learning rate «(v): begin
if v <tathen a(v) =0, S(v) = So;
else if v < to then a(v) = a, S(v) = So;
else if v < too then a(v) = a, S(v) = Spe™™;
else a(v) =a, S(v) = So;

end

recompute nb. matr. g; based on S(v) ;

select a random mini-batch ,,,0 < n < NV ;

update prototypes p; according to eqn. (18) ;

enforce constraint using eqn. (10) ;

adapt averages d;(v) and d2(v) using eqn. (13) ;

end
return p;

end
Algorithm 1: Mini-batch based learning with the ReST model.

e/, regardless of the direction. Higher values of e” will push the activities further away
from their geometric mean, forcing them to be more specific, either close to O or far
away from it. We can thus think of ¢ as a parameter controlling the sparsity of neural
responses, which previous studies on transfer functions for self-organized maps [10]
found to be an important factor for performing classification based on SOM activities.

In order to guarantee identical functioning of the WTM mechanism for variable map
sizes, the softmax function needs to be parameterized correctly, and more specifically
as a function of the number of neurons in the SOM. We therefore need to set the param-
eter 5 such that qualitatively identical behavior ensues for any map size. We measure
identical behavior by demanding that the the maximal response of the softmax function
be £ when given a vector « € R" that consists of n — 1 times value B and 1 time value
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AB. Solving this for 3 gives us the expression

CIn(¢t—1)—In(n—1)
p= B(1—-)\)

The softmax function is a very useful tool for obtaining a “hard” yet differentiable win-
ner selection, in addition to allowing a steady transition between "hard” and “’soft” win-
ner selection. In some cases, problems can occur: first of all, sensible choices for B and
A may be hard to obtain because they depend on the learning dynamics. Furthermore,
when S > 700, numerical issues arise due to the exponentials involved. Fortunately
there is a simple rule-of-thumb solution for both problems that consists of applying a
softmax function with “’best guess” parameters several times in eqn. (4). This compli-
cates the gradient, but as long as the final softmax function gives a sufficiently hard
winner assignment, the learning rule (18) remains valid. Software frameworks like Ten-
sorFlow can compute the gradient symbolically, so even the exact gradient can be used
regardless of how often softmax was applied. We found that a three-fold application
was always sufficient to guarantee a unique winner selection.

The parameter S is usually made to depend on the map size. A rule of thumb
that always worked well is to choose it proportional to the diagonal of the quadratic
K x K map, i.e., Sp = %. In contrast, classification experiments always give best
results the smaller S, is, so this is always fixed at small values like S, = 0.01.
The values of ¢y, t4 and ¢, can be determined empirically be requiring that i) self-
adaptation has occurred before ¢ 4 ii) the energy function has converged to a stable value
before ¢y and iii) that the energy function is as low as possible while still satisfying
all constraints at ¢.,. Here, we see the value of an energy function as it can be used
to determine convergence, so these parameters which for SOMs have to be obtained
by visual inspection, can be determined by cross-validation. By a similar reasoning,
a good value for the learning rate can be obtained, where smaller values are always
acceptable but lead to increased training time. The mini-batch size is generally assumed
to be N = 1 in this article. The self-adaptation rate, a4 N, should be chosen such that
the constraints are approximately upheld during prototype adaptation, meaning it will
depend on the choice of « and is thus not a free parameter but can be indirectly obtained
by cross-validation.

(22)

2.2 Data

We rely on the well-known MNIST benchmark [9] for handwritten digit recognition that
is a standard problem in machine learning. For our purposes, it is ideal for testing our
implementations as it allows a visual inspection of the learned prototypes, facilitating
the detection of implementation errors through obviously corrupted prototypes. The
MNIST dataset contains 60.000 training samples in 10 classes that are approximately
equiprobable, as well as 10.000 samples in the test set.

3 Experiments

The ReST model used in all experiments is implemented in Python using TensorFlow
1.5 [1]. The gradients (18,15) are computed automatically by the software. Energy mini-
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Fig.1. Upper two rows: Different stages of ReST training on the MNIST dataset. Upper row,
from left to right: ReST prototypes with long-term geometric activity averages superimposed
on them for times ¢ = 7000,12000,24000. Middle row, from left to right: ReST proto-
types with long-term geometric standard deviation averages superimposed on them for times
t = 7000, 12000, 24000. We observe that activity averages and deviations are strictly adhered
to, as well as the SOM-like topological organization of prototypes. Lower row: Distribution of
per-neuron parameters o; and s; after convergence of the ReST layer at iteration 24000.

mization is done by plain stochastic gradient descent, although more advanced optimiz-
ers minimize the ReST energy function equally well.

3.1 Self-organization and self-adaptation in the ReST model

In this section we will demonstrate that the ReST model, while differing from both the
original SOM model [8] and the energy-based “Heskes model” [6], achieves the same
basic type of prototype self-organization. At the same time, we will demonstrate the
effectiveness of ReST’s self-adaptation process as described in Sec. 2.1 and comment
on its beneficial effects. To this end, we will conduct simulations with both datasets
described in Sec. 2.2. ReST parameters are chosen as follows (in the terms of Sec. 2.1):
K =10, T = 40000, t4 = 5000, t, = 10000, to = 30000, Sy = K/4, Soc = 0.1,
ag = 0.01, a = 0.05, e = 3 and e* = 0.1. After ReST convergence at ¢, statistics
is collected for 5000 iterations and subsequently evaluated. Histograms of all neural
activities during these 5000 iterations are computed and compared to the theoretical
log-normal distribution determined by 1 and o. From Fig. 1, it can be observed that self-
organization proceeds exactly in the same manner as in a SOM, starting with a coarse
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global ordering” of prototypes followed by refinement as S(v) is decreased, showing
that ReST performs essentially the same function as a SOM, only with convergence in
2D guaranteed and a self-adaptation process that give a probabilistic interpretation to
the computed activities. As can be seen in Fig. 2, the fit between theoretical and mea-
sured distribution is generally acceptable for all datasets, although of course a perfect
fit is not to be expected. This is because we only fit the first two moments of the log
activities to defined values. For a better fit, at least the third moment of the log activities
should be controlled, which would however result in a more complex constrained op-
timization scheme. Fig. 1 shows this homogeneity is achieved by quite heterogeneous
settings of the per-neuron parameters o; and s;, see eqn. (1).
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Fig.2. Activity histograms for neuron (4, 4) in a ReST layer trained on MNIST both for the
case of disabled (left) and enabled (right) self-adaptation. The theoretical log-normal density is
superimposed onto the histograms as a solid green line, showing a very good match.

3.2 Convolutional ReST experiments
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Fig.3. Prototypes for convolutional/independent ReST architectures (left to right), defined by
fH AR 4y 2:ind-14-7-0-0, ind-14-7-1-1, ind-14-7-2-2, conv-14-7, ind-7-3-3-3, ind-7-3-6-6.

As with CNNs, convolutional ReST layers have a great number of possible configu-
rations for the filter sizes (f, f,") and step sizes (A, AT, of which we can test only
a few. Experimental outcomes are the learned filters for each configuration as shown in
Fig. 3, where we see that ReST performs both topological organization (as in a SOM)
as well as feature extraction (as in a CNN layer).
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3.3 Intuitive interpretation of the self-adaptation process
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Fig. 4. Prototype positions overlaid in color with per-neuron parameters o; (left) and s; (right)
when training a ReST layer on a 2D normal distribution.

To better understand what the self-adaptation mechanism in ReST actually does, we
create a set of 10.000 two-dimensional data points «; € R? which are drawn from a
normal distribution with mean p = (0.5,0.5)7 and standard deviation X = 0.15. We
subsequently train a non-convolutional ReST layer of size K = 10 using the parameters
of Sec. 3.1. The final prototype positions and values of the per-neuron parameters s; and
0; are shown in Fig. 4 and shows the following things:

— where data points are more dense(sparse), overall offsets o; are lower(higher). This
is intuitive since prototypes that react to less frequently occurring samples need to
have a higher offset to maintain a constant average activity.

— where data points are more dense(sparse), selectivities s; are higher(lower), mean-
ing that a neuron will react less(more) strongly to nearby samples. This is intu-
itive as well, since a higher number of nearby samples would mean a near-constant
activity, with low variance, if neurons could not become more selective in their
reactions.

These results show that ReST neurons can adapt to the sample density in their Voronoi
cell, a behavior that closely mimicks self-adaptation mechanisms in biological neurons.

3.4 Implementation and GPU speed-up

Unless otherwise stated, benchmark experiments always use the following parameters:
Map size HT = WH =10, Xy = 2, ¢g = 0.1, €5, = 0.0001, X, = 0.01, Teony =
3000, Tiony = 10000. We compare the execution time per sample by feeding the SOM
model 2000 randomly selected samples, either running it on CPU or GPU (NVIDIA
GeForce 1080), and vary the map size W7 = HH ¢ {10, 15,20, 30,50} and the input
batch size N' € {1,5,10,20, 50,100} independently. The results of Fig. 5 show that,
first of all, GPU acceleration is most effective at high batch sizes and amounts to a factor
of roughly 10-20 w.r.t. CPU speed. Secondly, as expected, for high batch and map sizes
the GPU is saturated, resulting in no more speed improvements from parallelization.
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5. ReST execution speed depending on batch size and map size, measured on: CPU without

updating(left), GPU without updating (middle), GPU with updating (right).

And lastly, updating the SOM incurs a heavy speed penalty even on GPU, probably
because of the convolution in eqn.(4).

4

We

Discussion and conclusion

have presented a conceptually new and computationally feasible model of self-

organized learning that mimicks biological self-adaptation processes as a part of its
learning mechanism.
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