
Neural Computing and Applications

Incremental learning with a homeostatic self-organizing neural architecture
--Manuscript Draft--

Manuscript Number: NCAA-D-18-00539R1

Full Title: Incremental learning with a homeostatic self-organizing neural architecture

Article Type: S.I. : WSOM 2017

Keywords: incremental learning; Pattern recognition; Self-Organizing Maps; Concept drift

Corresponding Author: Alexander Gepperth, PhD
Hochschule Fulda
Fulda, GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Hochschule Fulda

Corresponding Author's Secondary
Institution:

First Author: Alexander Gepperth, PhD

First Author Secondary Information:

Order of Authors: Alexander Gepperth, PhD

Order of Authors Secondary Information:

Funding Information:

Abstract: We present a neural architecture for incremental learning applied to high-dimensional
visual problems.
Key building block is a new self-organizing neural model that we term ReST (Resilient
Self-organizing Tissue), which
takes over topological prototype organization from self-organizing maps, but is based
on an energy function and offers a clear probabilistic interpretation of neural activities,
which are constrained to be log-normal. Incremental learning in the presented
architecture is made possible by the localized prototype update behavior of the ReST
model which avoids catastrophic forgetting when faced with concept drift. We present
experiments on three visual classification problems that show hat incremental learning
is feasible, describe key mechanisms implemented in the architecture and validate
them by experiments on the same problems.

Response to Reviewers: Reviewer # 1: Thank you for the time you took to review the paper! We tried to address
all of your comments, we hope in a satisfactory fashion, in order to have an improved
paper...

1. I suggest the authors to discuss how the proposed method is better/different from
the state-of-the-art techniques.
→ OK, added another section to the introduction

2. The authors should add the comparison of the proposed method with state-of-the-
art.
→ very hard to do that because code for most of related work is not available, or would
have to be reimplemented with the risk of getting it wrong.
What we did: we added a section to the discussion. This includes a comparison to
EWC, HAT, LWTA and IMM. We do no conduct additional experiments bu compare
incremental learning performance from the experiments section to two of our articles
where we perform a systematic comparison of incremental learning on MNIST.

3. The authors should add the description of figures 3 and 4.
→ OK, done

4. It would be better to add the details about table 1 in the text rather than adding in

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

caption. The caption should be short.
→ OK

5. On what basis, the Rest parameters are selected, it should be explained in detail.
→ we added a subsection detailing the choice of parameters to the beginning of section
3.

6. It would be better if the method described in section 2 can de explained with the help
of diagrammatic representaion or flowchart.
→ adapted captions to Figs. 3 and 4, especially 4, to serve as a flowchart for
PROPRE20
7. The captions for tables 4 and 5 should be above the tables.
→ OK

8. The caption of table 5 can be reduced by adding the details in text.
→ OK

9. Again, the captions of figures 5,6,7,8,9 need to be reduced by adding their details in
text.
→ OK for Figs 6,7,8,9
→ not OK for Fig.5, the whole caption describes what is shown in the figure, which
cannot go to the text. For the other figures, we could move assessments and
judgements to the text, which makes the captions shorter.

10. The results should include the difference between original PROPRE and extended
PROPRE.
→ we did the exact opposite: it is actually not necessary to refer to the original
PROPRE algorithm, this only confuses a reader (I suppose you also found that
confusing). So, while citing the original article, we presented this version in a self-
contained form that does not rely on other articles. A comparison of results would have
been possible but rather meaningless as PROPRE2.0 is intended to replace PROPRE,
and should rather be benchmarked against current DNN-based incrental approaches
(which we do).

11. The authors should add more results by comparing their scheme with existing
techniques to validate their scheme.
→ done, see point 2

Reviewer #2: I have the strong feeling that this review was not about my paper but
about another. Could you please verify this, and (if true), inform the editors? Thank
you!

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Noname manuscript No.
(will be inserted by the editor)

Incremental learning with a homeostatic self-organizing neural model

Alexander Gepperth

Received: date / Accepted: date

Abstract We present a new self-organized neural model that
we term ReST (Resilient Self-organizing Tissue), which can
be run as a convolutional neural network (CNN), possesses
a c∞ energy function as well as a probabilistic interpre-
tation of neural activities. The latter arises from the con-
straint of log-normal activity distribution over time that is
enforced during ReST learning. The principal message of
this article is that self-organized models in general are, due
to their localized learning rule that updates only those units
close to the best-matching unit (BMU), ideal representation
learners for incremental learning architectures. We present
such an architecture that uses ReST layers as a building
block, benchmark its performance w.r.t. incremental learn-
ing in three real-world visual classification problems, and
justify the mechanisms implemented in the architecture by
dedicated experiments.

Keywords Incremental learning · pattern recognition ·
neural networks · self-organizing maps

1 Introduction

This article is in the context of research on incremental learn-
ing algorithms, and elucidates how self-organizing neural
models can be an integral and necessary part of such algo-
rithms.

Incremental learning [1] is a form of learning that is
quite different from the more well-established algorithms
like neural networks (including deep learning), support vec-
tor machines or bagged decision trees, as it does not impose
a separation of training and test phases. Incremental models

A.Gepperth
University of Applied Sciences Fulda
Tel.: +49-(0)661-9640-3485
E-mail: alexander.gepperth@cs.hs-fulda.de

Fig. 1 Illustration of the local update behavior of self-organized mod-
els: a sample representing the number 5 will trigger updates only in the
vicinity of neurons already ”tuned” to this visual class (region marked
in red). Under no circumstances will selectivities of neurons far away
from this location (e.g., the region marked in yellow) be adapted. In the
case of concept drift in the form of an added visual class, only the selec-
tivities of neurons that best repond to this class already are adapted, but
no others. This prevents (total) catastrophic forgetting although some
accuracy loss is probable as the local updates still ”overwrite” previ-
ously learned information.

can be updated with new samples at any time, and thus re-
trained as often as desired which is not (or not fully) possible
with the aforementioned models.

The precise definition of incremental learning is not a
subject of universal agreement. Although attempts at formal
definition ([2,1]) conflict in minor points, they seem to agree
that incremental learning algorithms

– take their training samples one by one, a capacity which
shall be termed here online learning)

– do not know the total number of samples in advance
– can deal with changes in the statistics underlying sample

generation

When one thinks about it, the last two properties are really
equivalent: any finite dataset that is split into two parts will
almost surely exhibit different statistics in each part (see [3]
on how this fact affects cross-validation methods in machine

Manuscript Click here to access/download;Manuscript;soms.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/ncaa/download.aspx?id=496518&guid=505633ff-fcad-48ef-8448-6d951a259404&scheme=1
https://www.editorialmanager.com/ncaa/download.aspx?id=496518&guid=505633ff-fcad-48ef-8448-6d951a259404&scheme=1
https://www.editorialmanager.com/ncaa/viewRCResults.aspx?pdf=1&docID=18742&rev=1&fileID=496518&msid=ea1ab220-5b8d-40c4-be3d-5b517254b48a

2 Alexander Gepperth

front back

leftright

background

pedestrians

Fig. 2 Representative samples from the real-world pedestrian detec-
tion and classification datasets used in this study, in addition to MNIST.
There are two classification problems: pose classification into the four
classes left/right/front/back (boxes with green borders), and pedestrian
detection, i.e. classification into a pedestrian and a background class
(boxes with red borders).

learning). Since data in incremental learning scenarios can
always be divided into past (already seen) and future (as yet
unseen) samples, statistics in those two parts will in gen-
eral be different. For algorithms not suited for incremental
learning, this leads to the so-called catastrophic forgetting
effect [4,5,6,7,8] which was mainly coined for supervised
learning with neural networks but exists for other models
as well.Thus, although incremental learning is not a priori
specific to supervised or unsupervised learning, the term is
mostly used in the context of supervised learning, and we
will treat supervised incremental learning in this article.

Self-organized neural models are unsupervised models
of neural learning, of which the best-known one is the SOM
algorithm [9]. Put simply, the relevance of self-organized
models for incremental learning is due to their local update
behavior: only the weights in a local neighbourhood around
the neuron that best represents the current input are updated.
In an incremental learning setting, this means that local con-
cept drift will lead to parameter updates only in a subset of
neurons. This simple idea is visualized in Fig. 1 and repre-
sents the conceptual foundation of our work on incremental
learning so far[10,11], including this article.

Generally, changes in data statistics as encountered in in-
cremental learning are denoted somewhat generally as con-
cept drift [12,13], which can be gradual or abrupt. In the
latter case one often uses the term concept shift. When data
statistics do not change globally but only in a specific region
of data space, sometimes the term local concept drift is used
[13]. A prominent example is the addition of a new, visually
dissimilar class to a classification problem, which is the kind
of concept drift mainly treated in this article. Local concept
drift in particular is an important use case for incremental
learning algorithms as there is, a priori, no reason why new
statistics in localized regions of data space should disrupt

learned models elsewhere. Another and much more prob-
lematic case is local concept drift/shift with conflict (also
treated here), for example when a new but similar class ap-
pears in the data: this will in any event have an impact on
classification performance until the model can be locally re-
adapted to separate the old from the new class. Recognizing
concept drift at application time constitutes a challenging
task, see [12,13] and references therein. Coarsely speaking,
an algorithm needs to decide whether a deviation is just due
to noise, or due to a real change in data statistics. This im-
plies a model of the data, in the simplest form a time scale
on which ”real” concept drift can occur. If concept drift can
be reliably detected, it is possible to adapt to it, although
this adaptation raises another difficulty: when old and new
data statistics are in conflict, how quickly should models be
updated? They can be updated quickly but in this case, old
information will be forgotten equally quickly. On the other
hand, adaptation can be performed slowly, in which case old
information is retained longer: it really depends on the appli-
cation one has in mind to correctly set these parameters. This
complexity of online learning might seem intimidating w.r.t.
batch learning algorithms. However, the conceptual simplic-
ity of the latter stems from the extreme simplification that is
made in discarding all temporal information in a set of data
samples.

1.1 Focus and contributions of this article

This article proposes a new self-organized learning model
termed ReST (Resilient Self-organizing Tissue), and incor-
porates it as a building block into an architecture for incre-
mental learning, PROPRE2.0. Since self-organized models
(in this case ReST) are not, on their own, capable of super-
vised incremental learning, PROPRE2.0 implements several
additional mechanisms which are described together with
an in-depth analysis of their performance and their justifi-
cation in a typical, applied incremental learning scenario,
namely the abrupt addition/presentation of a new, previously
unseen visual class (see Figs. 1,2 for a visual impression of
the learning problems). The key mechanisms which will be
discussed and validated in this article are:

– a supervised read-out mechanism for ReST layers
– a ReST-based concept drift detection mechanism
– protection of the ReST layers against sampling bias by

selectively controlling prototype updates
– adaptive suppression of sub-leading ReST activity to pro-

tect read-out layer against concept drift
– adaptive control of ReST parameters to maintain topo-

logical ordering in the face of concept drift

The ReST model itself presents, while retaining all rel-
evant properties of a self-organizing map, several truly new

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 3

features that enhance its usefulness for incremental learning
problems:

– derivation of the learning rule from an infinitely often
continuously differentiable energy function

– clear probabilistic interpretation by enforced log-normal
distribution of neural activities

– use of activities with problem-independent log-normal
distribution instead of problem-dependent input-prototype
distances

– convolutional architecture analogous to a DNN layer

Taking a broader view, the article aims at promoting the
fundamental suitability of self-organizing algorithms for in-
cremental learning, which is due to the following favorable
properties:

– online learning capacity: traditionally, self-organized mod-
els are fed their training samples one by one (in ReST,
this is obtained as stochastic gradient descent on an en-
ergy function).

– robustness against changing statistics: all SOM-like mod-
els update prototypes exclusively in the vicinity of the
best-matching unit (BMU). Due to the topological orga-
nization of prototypes, concept drift in one part of data
space will not affect prototypes for another, distant part
of data space, thus avoiding catastrophic forgetting (see
Sec. 3.3).

– constant model complexity: except for growing neural
gas models, the model complexity of self-organizing is
fixed by the number of units. For incremental learning,
this is an advantage as it is often conducted under real-
world/real-time conditions where guaranteed time and
memory complexity are of high importance (e.g., for
treating streaming data or in robotics applications). Com-
parable incremental learning algorithms es listed in Sec. 1.2
often exhibit variable model complexity which can ef-
fectively render them unusable depending on the chosen
application.

1.2 Related work

There are a number of approaches for incremental learning
with support vector machines (see [14] for an overview), but
in the light of the given definitions, these approaches are
closer to online learning and will run into trouble under con-
cept drift. Furthermore, there are ensemble learning algo-
rithms [15,14] that achieve incremental learning simply by
training new classifiers for new batches of data, and combin-
ing all existing classifiers for decision making. While this in-
deed achieves incremental learning under some conditions,
it makes the implicit hypothesis that concept drift coincides
with new data batches, whereas a detection of concept drift
is not addressed at all. As the problem of catastrophic for-
getting was first remarked for multilayer perceptron (MLP)

models [4,5], it is hardly surprising that there is significant
work on the subject of how catastrophic forgetting could be
avoided[16,17,18,19,20,21,22] although none of these pro-
posals is completely free of problems and of limitations.

1.2.1 Incremental deep learning methods

The field of incremental learning is large, e.g., [23] and [24].
Recent systematic comparisons between different DNN ap-
proaches to avoid CF are performed in, e.g., [25] or [26] and
[27]. Principal recent approaches to avoid CF include en-
semble methods [28,29], dual-memory systems [30,31,32,
10] and regularization approaches [33,34,35,36,20]. The work
presented in [20] advocates the popular ”dropout” method
as a means to reduce or eliminate catastrophic forgetting,
In [37], a new kind of competitive transfer function is pre-
sented which is termed LWTA (”local winner takes all”).
This article also remarks that most forgetting happens in
the readout layers of a DNN, and that maintaining separate
readout layers for each sub-task can alleviate catastrophic
forgetting. In [35] the authors advocate determining the hid-
den layer weights that are most ”relevant”, and punishing
the change of those weights more heavily during re-training.
A related approach is pursued by the Incremental Moment
Matching technique (IMM) (see [36]), where weights from
DNNs trained on a current and a past sub-tasks are “merged”
using the Fisher information matrix. In [38], the concept
of Deep Adaptation is proposed, the basic idea being that
newly trained filters are constrained to be linear combina-
tions of existing ones, thus guaranteeing unimpaired per-
formance on the original problem. In the context of object
detection architectures, [39] proposed to limit catastrophic
forgetting by modifying the loss function, including a so-
called distillation loss term that minimizes the discrepancy
between responses for old classes from the original and the
updated network. The iCaRL model proposed in [40] ad-
dresses class-incremental learning in an essentially prototype-
based architecture, with a focus on managing/updating the
class-specific prototypes in an incremental fashion. Other
regularization-oriented approaches are proposed in [33,34]
and [41] which focus on enforcing sparsity of neural activi-
ties by lateral interactions within a layer.

1.2.2 Explicitly incremental learning algorithms

To perform explicit incremental learning as defined earlier
in this section, most modern approaches perform an explicit
local partitioning of the input space and train a separate clas-
sification/regression model for each partition [42,43,44,45,
46]. The manner of performing this partitioning is very di-
verse, ranging from kd-trees [46] to genetic algorithms [45]
and adaptive Gaussian receptive fields [42]. Equally, the choice
of local models varies between linear models [42], Gaussian

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Alexander Gepperth

mixture regression [46] or Gaussian Processes [43]. Since
this article is concerned with high-dimensional perceptual
problems, it can be stated for all cited approaches that it
is really the partitioning of the input space that is costly in
terms of memory. Most notably, covariance matrices used in
[42] are quadratic in the number of input dimensions which
makes their use prohibitive for high data dimensionalities.

1.2.3 Neural self-adaptation

Self-adaptation has been observed in biological systems [47]
where it is usually termed homeostatic plasticity in order
to distinguish it from synaptic plasticity mechanisms. The
most influential modeling approach based on these findings
is the intrinsic plasticity mechanism described, e.g., in [48]
and references therein. Intrinsic plasticity aims at matching
the lower-order moments of a neuron’s activity to match an
exponential distribution which is very similar to what we
propose here, although we propose to match a log-normal
distribution which is observed abundantly in neural circuits
[49] and our self-adaptation is performed in an online learn-
ing scenario which was not the case in [48]. In the context of
deep neural networks, the concept of batch normalization[50]
is a very similar notion: here, neural activities are matched to
fit a normal distribution, although only for the current mini-
batch. We observe, just as stated in [50], that training con-
vergence is strongly accelerated by this mechanism and that
the choice of learning rates becomes much less problem-
dependent.

1.2.4 Energy-based self-organizing models

There has been significant research (see [51] and references
therein) on finding an energy function for the original SOM
model [9], but is was finally shown that such an energy
function does not exist. However, a minimal modification of
the winner selection mechanism in the original SOM model
was shown to allow the construction of a simple and in-
tuitive energy function, see [51]. It is upon this model we
build our work on the ReST model, extending this ”Hes-
kes model” to include self-adaptation and thereby a conver-
sion to problem-independent activities (whereas the Heskes
model works with input-prototype distances whose values
will always depend on the problem at hand).

1.3 Overview of the PROPRE2.0 incremental learning
architecture

The PROPRE architecture for incremental supervised learn-
ing combines generative, self-organized learning of an inter-
nal representation with discriminative read-out, see Fig. 3.

SOM

projection

Linear

regression

pattern
vectors (I)

topology-preserving
representation (H)

category
vector (P)

ground-truth
vector (T)

performance
evaluationgating

signalsquality
evaluation

Fig. 3 Block diagram of the PROPRE2.0 architecture for incremental
learning. Main building blocks are one or more self-organized ReST
layers, a linear regression module based on the last ReST layer, and a
module that evaluates prediction performance and ambiguity for gating
ReST layer learning.

As a typical self-organized model, the internal ReST repre-
sentation is topologically organized, and prototype adapta-
tion modifies weights only locally. It is above all this prop-
erty that allows for incremental learning of prototypes: adap-
tation of a single prototype changes just its neighbours, which
are close in data spacea as ensured by the topological orga-
nization of selectivities.

From the classification estimate, a task-related error sig-
nal is derived which adapts the internal representation in
case of mismatch or classification ambiguity. This ensures
that prototype density increases in regions of the input space
that are difficult to classify, or in which concept drift is oc-
curring. Prototype adaptation is stably self-terminating when
no more errors are made, or when concept drift subsides.

PROPRE2.0 includes several mechanisms that make the
internal ReST layer suitable for stable supervised and in-
cremental learning, namely self-adaptation, supervised read-
out, protection of the hidden layer against sampling bias,
protection of the readout layer against concept drift effects
and preservation of topological organization under concept
drift. After a demonstration of the incremental learning ca-
pabilities of PROPRE2.0, these mechanisms are discussed
in-depth and justified by experiments.

A block diagram of the PROPRE2.0 architecture and a
simplified version of its reaction to concept drift during in-
cremental learning, is given in Figs. 3,4.

1.4 Differences of PROPRE2.0 to incremental deep
learning methods

PROPRE2.0 differs in several ways from recently proposed
DNN appraoches to incremental learning. First of all there
are differences about assumptions and scaling behavior: PRO-
PRE2.0 does not assume any knowledge about data it is go-
ing to be retrained with later, such as it is done in [52]. It
also requires no knowledge about which sub-task the model
is currently being tested on, as it is assumed in [25]. Fur-
thermore, in contrast to methods based on generative re-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 5

SOM

projection

Linear regr.

topology-preserving
representation (H)

category
vector (P)

ground-truth
vector (T)

performance
evaluationGating

signalsquality
evaluation

2) weak
activity

1) concept
shift

4) empty
predicton

5) ambiguous
classification6) activate

learning

3) no LR
adaptation

Fig. 4 Sequence of events as a reaction to concept shift in the form
of a new visual class, to be regarded together with Fig. 3. A complete
PROPRE2.0 treatment of a single sample is always composed of the
following steps, which are here linked to the depicted events: a) feed-
forward pass and linear classification (events 2,4) b) decision about
adapting LR based on ReST activity (event 3) c) measurement of pre-
diction ambiguity (event 5) d) decision about adapting ReST layer(s)
based on prediction ambiguity (event 6).

play, PROPRE2.0 has constant update complexity as sam-
ples from previously trained classes do not need to be re-
trained again. Then, there are fundamental differences in the
energy functions used for DNN training: while most DNN
models use a standard cross-entropy loss (at least for classi-
fication problems), at best complemented by additive regu-
larization terms [33,34,35,36], PROPRE2.0 uses a separate
loss function (here termed energy functions) for each ReST
layer and a standard cross-entropy loss for the readout layer.
The ReST energy function is such that locality in data space
is automatically enforced, even in the absence of supervi-
sion (indeed, ReST layers have an essentially unsupervised
energy function). ReST layers therefore do not require reg-
ularization to ”protect” important weights, since new data
samples automatically modify only those weights that they
are similar to, and leave the others unchanged. Of course,
this comes at the price of a potentially lower classification
accuracy since the only form of supervision is a mechanism
that trains ReST layers only when the current sample was
misclassified.

2 Methods

2.1 Datasets

Table 1 Important properties of the three datasets used in this article,
see text for details.

Dataset #train # test dim.sions preproc. # classes
MNIST 60.000 10.000 28x28=784 raw 10
poses 12.684 2.516 756 HOG 4
peddet 10.000 19.148 756 HOG 2

In this article, we use three different classification bench-
marks1 in order to investigate incremental learning with self-
organizing models. First of all, we make use of the MNIST
dataset of hand-written digits [53] which is a standard bench-
mark in machine learning. In addition, we use two datasets
obtained from a visual pedestrian classification benchmark,
the Daimler Pedestrian Detection Benchmark[54]. The first
dataset if about pedestrian detection, i.e., the distinction of
pedestrian images from background/non-pedestrian samples,
whereas the second task is about pedestrian pose classifica-
tion, assigning one of the four classes ”front/back/left/right”
to pedestrian samples (no background samples in this task)
according to their visually perceived orientation. Please see
Fig. 2 for a visualization of the pedestrian-related tasks, whereas
we refer to [53] for an in-depth description of the MNIST
benchmark.

The MNIST dataset is a relatively ”clean” problem (very
little noise and overall variance) where excellent recogni-
tion rates can be achieved even on the raw image data. In
contrast, the two pedestrian datasets are difficult real-world
problems which require a more sophisticated preprocess-
ing in order to be solved with any degree of precision. The
applied preprocessing method is termed HOG (histogram
of oriented gradients, see [55]) and represents a standard
method in real-world visual object recognition. Using the
terms of [55], the parameters of the HOG transform applied
to cropped images downsampled to a size of 32 × 64 are:
block size 16 × 16, cell size 8 × 8, 2 × 2 cells per block, 9
orientations bins and normalization enabled.

For the MNIST benchmark, each of the 10 classes con-
tributes approximately 10% of the total data samples in train-
ing and test data. The other two datasets are unbalanced: for
the ”Pedestrian Pose” Problem, the distribution of classes
is 19% (front), 37% (back), 22% (left) and 22% (right) for
the training data and 19%(front), 11% (back), 35% (left)
and 35% (right) for the test data. For the ”Pedestrian Detec-
tion” problem, the distribution is 50% (pedestrians) and 50%
(background) for the training data, as well as 56%(pedestri-
ans) and 44%(background) for test data.

Important global facts about all three datasets are given
in Tab. 1.

2.2 The ReST model: single-layer, non-convolutional
version

ReST is used as a building block for incremental learning
within the PROPRE2.0 architecture that will be detailed be-
low. For pedagogical reasons, we introduce ReST first in a
non-convolutional version since the introduction of the latter
makes the notation much more complex (without changing
the essentials). The generalization to a convolutional model

1 Available under www.gepperth.net/alexander/data

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Alexander Gepperth

and its integration into a multi-layered architecture will be
outlined in Sec. 2.3.

For now, we assume a dataset (or a mini-batch) of in-
put vectors xn ∈ Rk and a two-dimensional set of K ×K
neurons with non-negative activities ai ≥ 0, i = 1 . . . ,K2.
It is convenient to express activities computed for an input
xn as a one-dimensional vector an ∈ RK2

. A neuron with
index i and coordinates xi, yi has an associated prototype
pi ∈ Rk, i = 1, . . . ,K2, as well as an K × K neighbour-
hood matrix gi that we write as a one-dimensional vector
gi ∈ RK2

in analogy to the vector of activities. Differing
from the SOM model, each neuron furthermore possesses
two internal variables oi and si that play a role in enforcing
log-normal statistics for the activities an that are computed
as follows:

dni =

√
(pi − xn)

2 (1)

ãni = oi − sidni (2)

ani = exp (ãni) (3)

The adaptation of the prototypes pi is now achieved by min-
imizing the following energy function:

cni = 〈gi, log an〉 = 〈gi, ãn〉 (4)

E =
1

N

∑
n

〈cn,S (cn)〉 (5)

where the logarithm and the vector-valued softmax function
S(v) are applied in a component-wise fashion as

ei = exp(βvi) (6)

S(v)i =
ei∑
i ei
≡ Si, (7)

β being a parameter that controls the selectivity of the soft-
max: for higher β values, the output S(v) will tend to be
more strongly peaked, the maximal value closer to 1.0 and
the rest to 0.0. For lower β values, this relationship is in-
versed. The minimization of the energy function is performed
as a constrained optimization problem, the constraint being
that the activities an obey a log-normal distribution over
time, with the parameters µ and σ. This implies that log an
(with logarithm applied component-wise!) is normally dis-
tributed, with the empirical mean and standard deviation µ̂,
σ̂ coinciding with µ, σ:

µ̂ ≡ 1

N

∑
n

log ani =
1

N

∑
n

ãni
!
= µ (8)

σ̂ ≡
√

1

N

∑
n

(log ai − µ̂)2 =

√
1

N

∑
n

(ãi − µ̂)2
!
= σ

(9)

From these requirements, the per-neuron parameters oi and
si can be determined unambiguously from the first two mo-
ments of the input-prototype distances

si =

√
σ2

d2i − di
2 (10)

oi = µ+ sidi, (11)

which can be computed empirically over a dataset of N sam-
ples:

di =
1

N

∑
n

dni (12)

d2i =
1

N

∑
n

d2ni (13)

In a mini-batch setting, we instead take averages over the
current mini-batch of N samples (the extreme case being
fully online learning where N = 1). If we wish to compute
the averages di and d2i over periods longer than the mini-
batch size N , we replace eqns.(12) by a composite method
that makes use of a moving average of mini-batches aver-
ages:

di(ν) = (1− αdN)di(ν − 1) + αd
∑
n

dni (14)

d2i (ν) = (1− αdN)d2i (ν − 1) + αd
∑
n

d2ni (15)

where variable ν expresses the number of the current mini-
batch. We scale the adaptation rate αd < 1 with the mini-
batch size N since a larger N implies that more samples
are used per step in eqn.(14), and thus adaptation can pro-
ceed more quickly. Please note that by setting αd = 1

N we
can turn off the moving average mechanism, and in this case
only the current mini-batch is considered, as it is the case in
eqn.(12).

2.2.1 ReST learning rule

For performing gradient descent for the energy function of
eqn.(4), we take its derivative w.r.t. to the k-th element of
prototype i:

∂E

∂pik
=

∂

∂pik

1

N

∑
nj

cnjS(c)nj = (16)

=
1

N

∑
nj

(
S(cn)j

∂cnj
∂pik

+
∂S(c)nj
∂pik

cnj

)
= (17)

=
1

N

∑
nj

(
S(cn)j

∂cnj
∂pik

+ βS(cn)i (δij − S(cn)j)
∂cnj
∂pik

)
(18)

where we have used the expression ∂jSi = βSi(δij − Sj)
for the derivative of the softmax function. If we assume that

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 7

the softmax function is parameterized such that it puts 1.0 at
the position of the maximal value (whose index is expressed
by ∗), and 0 everywhere else, we obtain:

∂E

∂pik
≈ 1

N

∑
n

∂cn∗
∂pik

(19)

and arrive at the update rule

pi ← pi −
εsi
2N

∑
n

g∗i
pi − xn
||pi − xn||

(20)

where we have one more time designed the index of the best-
matching unit (BMU) by a star:

∗ = arg maxici (21)

If we had omitted the square root in the definition of input-
prototype distances in eqn. (1), we would have arrived at the
equivalent rule

pi ← pi −
εsi
N

∑
n

g∗i
(
pi − xn

)
(22)

which differs (for the online case ofN = 1) from the energy-
based SOM model proposed in [51] only by a factor of si
for each neuron. Regarding the original SOM model [9],
the additional difference is that the best-matching unit is
not determined from input-prototype distances but from the
convolution c of activities with the neighbourhood matrix
as given in eqn. (4). We can therefore see that the learning
rules (20,22) scale each neuron’s prototype adaptation by a
factor that is, by eqn. (10), inversely proportional to the vari-
ance of activities of that neuron. Thus, neurons whose pro-
totypes are either too unspecific or too generic (resulting in
uniformly low or high activations with low variance) receive
a competitive advantage. We also note that this mechanism
is self-limiting: increased prototype adaptation usually in-
creases the variance of a neuron’s activities, thus eventually
annulling the competitive advantage and leading to stable
competitive learning dynamics.

2.2.2 Implementation of constrained optimization

Minimizing the energy function (4) is performed by per-
forming repeated gradient descent steps using learning rule
(20) on the whole available training data set or mini-batch,
each step followed by an explicit enforcement of the con-
straints by applying eqn. (10), this again being followed by
an update of the averages using eqn.(12).

For speeding up convergence, the neighbourhood matrix
gi of neuron i is modelled as a Gaussian whose standard
deviation S(ν) is decayed exponentially over time, as it is
usual with SOMs:

gij = exp

(
− (xj − xi)2 + (yj − yi)2

2S(ν)2

)
(23)

Algorithm: Constrained ReST optimization

Parameters :
– nr of iterations T
– mini-batch size N
– initial and final neigh. radius S0, S∞
– learning rate α
– self-adaptation rate αd
– time parameters tA, t0 and t∞
– target values σ, µ for self-adaptation

Result: trained prototypes pi
begin

Initialize all prototypes pi to small random values ;
Initialize moving averages di(0) = 0 and d2i = 0 ;
Initialize per-neuron parameters si = 0.5, oi = 0 ;
Compute decay time constant λ = − log(−S∞/S0)

t∞−t0
;

for mini-batch ν < T do
compute nb.radius S(ν) and learning rate α(ν):

begin
if ν < tA then α(ν) = 0, S(τ) = S0;
else if ν < t0 then α(ν) = α, S(ν) = S0;
else if ν < t∞ then
α(ν) = α,S(ν) = S0e−λν ;

else α(ν) = α, S(ν) = S∞ ;
end
recompute nb. matr. gi based on S(ν) ;
select a random mini-batch xn, 0 < n < N ;
update prototypes pi according to eqn. (20) ;
enforce constraint using eqn. (10) ;
adapt averages di(ν) and d2i (ν) using eqn. (14) ;

end
return pi

end
Algorithm 1: Mini-batch based learning with the ReST
model.

In contrast to normal SOM learning we do not decay the
ReST learning rate α over time, since this complicates ad-
vanced gradient descent strategies and introduces unneces-
sary parameters. Additionally, we impose an initial period
without prototype adaptation where only the neural statis-
tics are adapted. This ensures that any deviation from the de-
sired statistics introduced by prototype adaptation are small,
leading only to small corrections to the oi and si, which
avoid potentially problematic feedback loops between the
two adaptation processes. The detailed training procedure,
as well as the relevant parameters, are detailed in Alg. 1

2.2.3 Choice of ReST parameters

The self-adaptation process is governed by the parameters
µ and σ of the log-normal distribution that the activities ai
are required to obey, which raises the question of what their
intrinsic significance could be, especially within the context
of self-organizing maps and incremental learning. First of
all, from the properties of log-normal distributions we know
that the quantity eµ represents both the geometric mean and
at the same time the median of a log-normally distributed
variable, so essentially we could just fix a median value M

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Alexander Gepperth

and compute µ = logM from it. The median for this distri-
bution is smaller but usually close to the arithmetic mean as
well so we can also see M as a rough indicator for the arith-
metic time average of a neuron’s activity. The quantity eσ is
sometimes termed the geometric standard deviation and can
be expressed as

eσ = exp

(√
1

N

∑
n

(
log

ani
eµ̂

)2)
= (24)

= N

√
Πn exp

((
log

ani
eµ̂

)2)
= Egn

√
exp

((
log

ani
eµ̂

)2)
(25)

and is thus related to the geometric mean of the expres-

sion
√
exp

((
log ani

eµ̂

)2)
. This expresses the multiplicative

spread of values around their empirical geometric mean eµ̂,
regardless of the direction. We can thus expect that higher
values of eσ will push the activities further away from their
geometric mean, forcing them to be more specific, either
close to 0 or far away from it. We can thus think of σ as a pa-
rameter controlling the sparsity of neural responses, which
previous studies on transfer functions for self-organized maps
[56] found to be an important factor for performing classifi-
cation based on SOM activities.

In order to guarantee identical functioning of the WTM
mechanism for variable map sizes, the softmax function needs
to be parameterized correctly, and more specifically as a
function of the number of neurons in the SOM. We therefore
need to set the parameter β such that qualitatively identical
behavior ensues for any map size. We measure identical be-
havior by demanding that the the maximal response of the
softmax function be ξ when given a vector x ∈ Rn that con-
sists of n − 1 times value B and 1 time value λB. Solving
this for β gives us the expression

β =
ln(ξ−1 − 1)− ln(n− 1)

B(1− λ)
(26)

The softmax function is a very useful tool for obtaining a
”hard” yet differentiable winner selection, in addition to al-
lowing a steady transition between ”hard” and ”soft” winner
selection. In some cases, problems can occur: first of all,
sensible choices for B and λ may be hard to obtain because
they depend on the learning dynamics. Furthermore, when
β > 700, numerical issues arise due to the exponentials in-
volved. Fortunately there is a simple rule-of-thumb solution
for both problems that consists of applying a softmax func-
tion with ”best guess” parameters several times in eqn. (4).
This complicates the gradient, but as long as the final soft-
max function gives a sufficiently hard winner assignment,
the learning rule (20) remains valid. Software frameworks
like TensorFlow can compute the gradient symbolically, so
even the exact gradient can be used regardless of how often

softmax was applied. We found that a three-fold application
was always sufficient to guarantee a unique winner selec-
tion.

The parameter S0 is usually made to depend on the map
size. A rule of thumb that always worked well is to choose
it proportional to the diagonal of the quadratic K ×K map,
i.e., S0 = K

4 . In contrast, classification experiments always
give best results the smaller S∞ is, so this is always fixed
at small values like S∞ = 0.01. The values of t0, tA and
t∞ can be determined empirically be requiring that i) self-
adaptation has occurred before tA ii) the energy function
has converged to a stable value before t0 and iii) that the en-
ergy function is as low as possible while still satisfying all
constraints at t∞. Here, we see the value of an energy func-
tion as it can be used to determine convergence, so these
parameters which for SOMs have to be obtained by visual
inspection, can be determined by cross-validation. By a sim-
ilar reasoning, a good value for the learning rate can be ob-
tained, where smaller values are always acceptable but lead
to increased training time. The mini-batch size is generally
assumed to be N = 100 in this article. The self-adaptation
rate, αdN , be chosen such that the constraints are approxi-
mately upheld during prototype adaptation, meaning it will
depend on the choice of α and is thus not a free parameter
but can be indirectly obtained by cross-validation.

2.3 ReST: Multilayer convolutional formulation

As the ReST model is to be used for incremental learning in
a potentially multi-layered and convolutional neural archi-
tecture, we keep the basic concepts from Sec. 2.2 but adapt
the notation and explain the generalization to convolutional
ReST layers. This is pretty simple: instead of having a single
input vector treated by a single set of prototypes, we now
subdivide the input into rectangular and regularly spaced
patches (”receptive fields”, RF), each of which is neverthe-
less still analyzed by a single set of prototypes and regula-
tory parameters o, s. For learning and statistics adaptation,
activities in each of the ”little ReST models” are averaged,
resulting in a unique update law for prototypes and regula-
tory parameters. In this section, we describe just the parts of
the model that are changed when passing to a convolutional
formulation, meaning that all other mechanisms remain as
outlined in the previous sections.

We adopt here the usual NHWC convention from deep
learning, modelling activities in each layer X as a four-dimen-
sional tensor a(X) ∈ RX using the short-hand notation R(X) ≡
RN×WX×HX×CX . This tensor is indexed by mini-batch in-
dex 0 ≤ n < N , RF y and x indices 0 ≤ h < H and 0 ≤
w < W , as well as the channel index 0 ≤ i < C, which cor-
responds to the linear index into the self-organizing ReST
map in analogy to the activity vector a in Sec. 2.2. For a
ReST map of size K × K, it therefore follows that C =

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 9

K2. In the manner of a convolutional network, inputs to
layerX , which are nothing but the activities of the preceding
layer X − 1 denoted as a(X−1) ∈ R(X−1), are re-arranged
into a new input vector x(X)

nwh ∈ RN×H(X)×W (X)×C̃(X)

ac-
cording to RF sizes F (X) = (f

(X)
x f

(X)
y) and step sizes

(∆
(X)
x , ∆

(X)
y), where H(X) ≡ 1 + hI−fI

fI−δI , W (X) analo-

gously and C̃(X) ≡ f
(X)
x f

(X)
y . The prototype vector asso-

ciated with each ”neuron”, i.e., each element indexed by the
channel index i, is therefore written p

(X)
i ∈ RF (X)

. Anal-
ogously, the neighbourhood matrix of neuron i is now de-
noted g

(X)
i , and the per-neuron parameters for regulating

output statistics are written o
(X)
i and s

(X)
i . As the super-

script indicating the layer makes equations very cumber-
some, we will drop it wherever this is possible without cre-
ating ambiguities.

In analogy to eqn. (1), we formulate the computation of
activities a(X) ∈ RX in layer X as follows, dropping the
layer superscript everywhere:

dnwhi =

√
(pi − xnwh)

2 (27)

ãnwhi = oi − sidnwhi (28)

anwhi = exp (ãnwhi) (29)

The adaptation of the prototypes p
(X)
i is now achieved

by minimizing the following generalized energy function
which is analogous to eqn. (4) except that we additionally
average over the W and H dimensions, i.e., over each ”little
ResT model”.

cnwhi = 〈gi, log anwh〉 (30)

E(X) =
1

NWH

∑
nwh

〈cnwh,S(cnwh)〉 (31)

The updated values of the regulatory parameters o(X)
i , s(X)

i

are now obtained as

si =

√
σ2

d2i − di
2 (32)

oi = µ+ sidi (33)

where the first two moments of the input-prototype distances
are obtained as

di =
1

NWH

∑
nwh

dnwhi (34)

d2i =
1

NWH

∑
nwh

d2nwhi (35)

As the convolutional ReST model is explicitly based on mini-
batches, the computation of the long-term averages of the
quantities dnwhi and d2nwhi must use, from the very begin-
ning, a form analogous to eqn. (14), where again superscripts

are dropped and averages are taken over the NWH dimen-
sions:

di(τ) = (1− αdN)d
(τ−1)
i +

αd
WH

∑
nwh

dnwhi (36)

d2i (τ) = (1− αdN)d2i (τ − 1) +
αd
WH

∑
nwh

d2nwhi (37)

2.4 Convolutional ReST model with independent filters

An interesting alternative to a fully convolutional model where
only a single set of prototypes and regulatory parameters
exists that is replicated over the WH dimensions, we pro-
pose here a similar possibility but with independent proto-
types/parameters for every (w, h) value. This only changes
the initial computation of activities to

dnwhi =

√
(pwhi − xnwh)

2 (38)

ãnwhi = owhi − swhidnwhi (39)

anwhi = exp (ãnwhi) . (40)

The energy function (30) remains valid, and the only real
difference to the convolutional model is that the regulatory
parameters owhi and swhi are now adapted independently
from each other at different spatial locations, which requires
a separate computation of moving averages in the spirit of
eqn.(36) as well. Obviously, the existence of a greater num-
ber of free parameters might allow a better representation of
input statistics and thereby a higher classification accuracy.
This will be tested in Sec. 3.1.

2.5 PROPRE2.0

We introduce a model for incremental learning as proposed
in [10], which used ReST layers (conceptually similar to
self-organizing maps) as the building blocks for incremental
learning. The presented model is similar in spirit to [10], yet
is aimed at performing incremental learning in a deep net-
work structure that is analogous to a CNN. By using ReST
layers, the number of independent free parameters is reduced
strongly w.r.t. [10]. The following model overview is self-
contained and uses a terminology more adapted to describe
convolutional deep networks, as this is the direction in which
we wish to develop this model. A TensorFlow/Python [57]
implementation is made publicly available.

A PROPRE 2.0 neural network can technically comprise
many layers, although in this investigation we consider a
shallow architecture of three layers: input layer (I), hidden
(H) modeled as a ReST layer, and an output layer (O). PRO-
PRE2.0 is a supervised model which requires a vector-valued
target t for every input x, where t usually encodes class

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Alexander Gepperth

Table 2 Significance of various value ranges of the confidence mea-
sure mn.

range meaning
∈ [−1,−0.5] certain, incorrect
∈ [−0.5,−0.1] uncertain, incorrect
∈ [0.1, 0.5] uncertain, correct
∈ [0.5, 1] certain, correct

membership in a one-hot fashion. The output layer O per-
forms simple linear regression, transforming hidden layer
activities a(H) to output layer activities a(O) to match the
target values t. A particular point are the modulatory in-
fluences within the architecture, which control and restrict
learning in hidden and output layers. The reaction of PRO-
PRE2.0 to the kind of concept drift/shift considered in this
article is shown in Fig. 4.

2.5.1 Forward pass and decision making

Following the presentation of a new mini-batch {xn}, activ-
ities a(H) in the hidden ReST layer H are generated as de-
tailed in Sec. 2.2. Linear regression is applied to a flattened
(over the single-sample indices h,w, i) and thresholded ver-
sion of a(H)

nwhi to generate output layer activities a(O):

t
(H)
nwhi =

{
a
(H)
nwhi if a

(H)
nwhi ≥ θ

0 else
(41)

f (H)
n = flatten(t(H)

nwhi) (42)

a(O)
n =W (O)f (H)

n + b(O) (43)

The classification decision χn is then computed as the sim-
ple argmax of output layer activities, together with a confi-
dence measure mn:

χn = arg maxia
(O)
ni (44)

un = maxia
(O)
i −max2ia

(O)
i (45)

mn =

{
un if arg maxjtnj = arg maxja

(O)
nj

−un otherwise
(46)

where max2 indicates the second-highest value. Please see
Tab. 2 for a clarification of the significance of the confidence
measure mn.

2.5.2 Learning and modulation

Training prototypes in layer H is performed by minimiz-
ing the ReST energy function by gradient descent as de-
tailed in the previous section. Training the linear regression
weights in the output layer O is done by minimizing the
cross-entropy loss function based on a softmax-processed

version of the activities a(O):

E(O) =
1

N

∑
ni

tni logS(a
(O)
n)i+

+ (1− tni) log
(
1− S(a(O)

n)i

)
(47)

This requires the setting of a learning rate αLR in the update
rule, which is a free parameter of the PROPRE2.0 architec-
ture.

However, hidden layer and output layer neurons must
not adapt their weights all the time, only when it can be
done safely. Here, there are two distinct cases to be distin-
guished: first, when the hidden layer has low overall activ-
ity, maybe because the input belongs to a newly added class,
then linear regression should not adapt its weights because
hidden layer activity is probably not meaningful and it will
impair performance for already represented classes. This is
achieved automatically by thresholding hidden layer activ-
ities in eqn. (41), leading to zero activity if activity is too
low and thereby effectively switching off linear regression
learning. Secondly, hidden layer prototypes will only be up-
dated when the current estimate of class membership, i.e. the
output layer activities a(O)

n , is either uncertain or wrong. To
measure uncertainty, we first define an uncertainty measure
based on the output layer activities, whose basic idea is that
a certain estimate of class membership has a clear activity
maximum, so a good measure is just to use the bounded dif-
ference between first and second maximum, finally leading
to the confidence measure mn defined in eqn. (44). In con-
trast to the updating of LR weights, which is regulated au-
tomatically by the thresholding operation in eqn. (41), pro-
totype adaptation in the ReST layer needs to be controlled
explicitly. For this purpose, we define a modulation measure
λn depending on confidence measure mn, which is defined
as:

λn =

{
0 if mn > θm

1 otherwise
(48)

Here, the threshold −1 < θm < 1 is another free parameter
which governs the willingness of the architecture to update
itself as a reaction to the classification confidence mn (see
Tab. 2 for an interpretation of this measure). By threshold-
ing mn we thus allow hidden layer weights to be trained
only when the current class estimate is of less-than-perfect
quality, either outright incorrect (for θm ≤ 0) or correct but
of significant uncertainty (for θm > 0).

2.6 Evaluation measures

In the experiments presented in Sec. 3, we use several dif-
ferent measures to evaluate and visualize results which shall
briefly be explained here. They are standard measures for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 11

Table 3 Parameters used in PROPRE2.0 experiments. Please refer to
Sec. 2 for an explanation of the symbols.

K 10 θ 0.5 tA 3000
αd 0.00001 α 0.005 S0 0.25K
t0 9000 tinf 19000 tincr 24000
S∞ 0.01 αLR 0.001 θm 0.0
eσ , eµ 0.1, 3 ∆tincr 6000 N 100
Sincr 0.2

SOM quality and supervised learning that are frequently used
in the literature. For comparing the topological ordering in
a given ReST layer, we resort to the so-called topographic
error etop [58]

en ≡
{
1 if y∗n is adjacent to y∗2n
0 else

(49)

etop ≡ 1−
〈
en

〉
n
, (50)

where y∗2n is the position of the unit with the second-highest
activation after the BMU which resides at y∗.

Lastly, we consider the classification accuracy E in or-
der to assess the success of supervised learning in assigning
the proper classes to input vectors. Given the ground-truth
vector tn and the a network output ap(O)n in response to a
sample with dataset or mini-batch index n, the classification
accuracy is defined as

En ≡

{
1 if arg maxia

(O)
ni = arg maxitni

0 else
(51)

E =
〈
En

〉
n

(52)

3 Experiments

All PROPRE2.0 experiments use, by default, a single non-
convolutional hidden ReST layer of size K = 10. Each ex-
periment begins with a convergence phase where only ReST
self-adaptation is performed in order to have a well-defined
starting point for learning. Subsequently, full ReST learn-
ing plus self-adaptation are conducted with neighbourhood
radius S0 until t0, whereupon it is exponentially decreased
to reach its asymptotic value S∞ at t∞. Self-adaptation and
training with asymptotic parameters is conducted until tincr,
whereupon normal PROPRE2.0 training is conducted with
modulatory influences turned on until Tincr +∆Tincr. The in-
cremental learning step, presenting exclusively examples of
a previously unseen class, requires an additional procedure
in order to maintain a topological prototype organization,
which is ensured by increasing the neighbourhood radius to
Sincr at t = tincr, and exponentially reducing it to its asymp-
totic value S∞ at t = tincr +∆tincr.

The adaptable parameters of the PROPRE algorithm are
given in Tab. 3. Parameters like N , K, Tinf, TA and tinf are

Table 4 Classification accuracy E as a function of hidden layer size
K. As may be expected, increasing K increases performance.

Task E10x10 E30x30 E50x50

MNIST 91.3% 96.7% 98.2%
peddet 95.1% 97.0 % 99.2%
poses 85.2% 89.8% 92.1%

chosen such that a single learning run can be performed
in under 10 minutes on off-the-shelf hardware. The ReST
learning rateα is chosen empirically, whereas the self-adaptation
rate αd is chosen such that self-adaptation is performed at a
slower timescale than protoype adaptation. The target val-
ues for geometric mean and standard deviation are in princi-
ple arbitrary except that a eσ must be high enough to allow
discrimination by the linear regression readout (the learning
rate of which is chosen as one would choose it for a DNN,
in relation to the batch size N). The PROPRE2.0 parame-
ters θ are chosen such that sufficient learning can happen
during the incremental learning period. All experiments will
use these values unless explicitly stated otherwise.

3.1 Non-incremental and incremental learning performance

This experiment has the goal of establishing that PROPRE2.0
can achieve acceptable non-incremental performance on the
datasets in this article, as well as showing that incremental
learning is possible and feasible. It is therefore conducted
in two variants: the non-incremental variant trains a PRO-
PRE2.0 architecture with various choices for the hidden ReST
layer (”flat” in the sense of Sec. 2.2, convolutional as de-
tailed in Sec. 2.3 or independent as in Sec. 2.4) until tincr,
that is, without incremental learning. No comparison to state-
of-the-art deep learning results on MNIST or other datasets
is intended, although the classification rates obtained here
(see Tab. 4) are not extremely far from state-of-the-art re-
sults using DNNs. We find that S∞ has a strong impact on
classification accuracy and should be chosen very small. We
also find that keeping θ = 0 during training increases clas-
sification accuracy moderately. The learning rates αLR and
α have an impact on final classification accuracy, but thanks
to self-adaptation we find that they do not need to be varied
across tasks.

The incremental variant, one the other hand, first splits
each dataset into class 0 (0 digits for MNIST, ”left” for
pose classification and ”background” for pedestrian detec-
tion) versus the remaining classes. These two datasets are
termed D1 and D2, respectively, and are used to measure
incremental learning capacity in a simple way. Testing vari-
ous convolutional configurations of the ReST layer (at least
on MNIST since its samples are images), initial training and
ReST convergence are performed on D1 until Tconv , retain-
ing the last test set performance on D1. Subsequently, re-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Alexander Gepperth

Table 5 Incremental learning accuracies (see text) on all three datasets
used in this study (but mainly on MNIST). For conv(olutional) and
ind(ependent) filter networks, the numbers in the first table column
indicate the filter sizes in X and Y direction, as well as the filter steps
in the X and Y direction. All results are classification accuracies before
and after training on D2:

XXXXXXXXdataset
model poses peddet MNIST

flat28/28/x/x x x 91/83
conv21/21/7/7 x x 85/78

conv14/14/14/14 x x 81/75
conv14/14/7/7 x x 93/87
conv7/7/7/7 x x 65/61
ind21/21/7/7 x x 87/82

ind14/14/14/14 x x 83/73
ind14/14/7/7 x x 96/92

ind7/7/7/7 x x 88/85
flat21/36/x/x 85/77 95/85 x

training on D2 is conducted until an accuracy of 90% is
achieved on the D2 test set, whereupon classification ac-
curacy on the D1 test set is measured, which is taken as a
measure of incremental learning capacity on that particular
task. Clearly, the higher this accuracy is, the less was for-
gotten about D1. Results for all three datasets and various
convolutional ReST configurations are displayed in Tab. 5.
The show that some forgetting is occurring, which is logical
as prototypes get reallocated to the new class, but that for-
getting is gradual and, above all, limited. In a previous study
[59] we performed very similar experiments using DNNs
and found catastrophic forgetting behavior (D1 accuracy at
chance level) when applied to MNIST, so the results pre-
sented here, while not perfect, represent a strong improve-
ment over the capabilities of current DNN models. For MNIST,
we tested various possibilities for convolutional ReST lay-
ers, both with fully-connected models as well as indepen-
dent and convolutional prototypes/parameters.

In the rest of this section, we will conduct experiments
that shed lights on the key mechanisms in PROPRE2.0 and
outline their necessity and their merit for incremental learn-
ing.

3.2 Self-adaptation of neural activities

In this section we will demonstrate the beneficial effects of
neural self-adaptation guaranteed by the ReST model. To
this end, we will conduct simulations with all three datasets
described in Sec. 2.1 and a single ”flat” (non-convolutional)
ReST layer. After ReST convergence at t∞, statistics is col-
lected for 5000 iterations until tincr and subsequently eval-
uated. Histograms of all neural activities during these 5000
iterations are computed and compared to a theoretical log-
normal distribution. As can be seen in Fig. 5, the fit between
theoretical and measured distribution is generally acceptable
for all datasets, although of course a perfect fit is not to be

expected. This is because we only fit the first two moments
of the log activities to defined values. For a better fit, at least
the third moment of the log activities should be controlled,
which would however result in a more complex constrained
optimization scheme. For the activity histograms of all neu-
rons in the ReST layer for all three datasets, please see Ap-
pendix A.

3.3 Basic feasibility of ReST for incremental learning

In this experiment, we wish to demonstrate the basic fea-
ture of the ReST model that makes it an excellent choice for
incremental learning: its purely local update behavior. Us-
ing the parameter settings from Sec. 3 and a hidden layer
size of K = 10 and an asymptotic neighbourhood radius of
S∞ = 1.0, we train the PROPRE architecture on the MNIST
dataset where the class ”0” has been removed from the train-
ing data. MNIST is well suited for this experiment as its
samples can be visually interpreted, making drift effects in
the prototypes clearly discernible.

At t = tincr, we introduce strong concept drift by pre-
senting only the hitherto excluded class 0 and the evolution
of ReST prototypes is observed at various times t > tincr,
here 500, 1500 and 5000. In order to obtain a purely unsu-
pervised behavior without any control of updating, we set
θm = 1.1 which results in a guaranteed ReST update for
every sample, see eqn. (48). The results can be observed in
Fig. 6. We observe that, as t increases, the insertion of the
new class affects more and more of the ReST prototypes but
the change is gradual and strictly local.

3.4 Protecting the ReST layer against sampling bias

As the experiments of the last section (see Fig. 6) show,
ReST prototype adaptation in the hidden layer H is strongly
impacted by the time a new class is presented for t > tincr.
The longer it is presented, the more prototypes lean towards
the new class, and consequently prototypes describing old
classes are forgotten. This is a variation of the sampling
bias problem often encountered in machine learning: the
frequency of classes during training is not correlated at all
to their frequency during application. In our case, this is a
highly undesirable effect as it is not at all the time of pre-
senting a new class that should control forgetting, but clas-
sification performance! PROPRE2.0 therefore adapts proto-
types only as long as classification performance for the new
class, as measured by the confidence measure of eqn. (44), is
unsatisfactory. This effectively protects the ReST layer and
makes prototype adaptation totally independent of the time
of presentation. To demonstrate this, we repeat the experi-
ments of the previous section but this time using a parameter
of θm = 0.7, meaning that once the confidence measure for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 13

Fig. 5 Activity histograms for neuron (4, 4) in a ReST layer trained on the pose classification (left), pedestrian detection (middle) and MNIST
(right) problem, both for the case of enabled (upper row) and disabled (lower row) self-adaptation. The theoretical log-normal density is superim-
posed onto the histogram as a solid green line, showing a generally good match for all three tasks.

Fig. 6 Demonstration of the purely local update behavior of the ReST model when learning incrementally, shown exemplarily for the MNIST
handwritten digit dataset. Indicated by color coding in each diagram is the euclidean distance between prototypes at times current time t and
tincr, for each prototype with index x/y. For better understanding, the color-coded distance map has been augmented by linear interpolation, and a
visualization of prototypes at time t > tincr is overlaid over each distance image.

Fig. 7 Protecting the ReST layer against sampling bias, shown exemplarily for the MNIST handwritten digit dataset. Color coding in each diagram
indicates the euclidean distance between prototypes at times t and tincr, for each prototype with index x/y. For better understanding, the color-coded
distance map has been augmented by linear interpolation, and a visualization of prototypes at time t > tincr is overlaid over each distance image.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Alexander Gepperth

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

%
 o

f e
xc

lu
de

d
ou

tli
er

s

% of kept inliers

MNIST
PedDet

PedPoses

Fig. 8 Elimination of outliers/concept drift using activities in the
ReST layer only, shown for the three datasets used in this study, see
text for details.

a sample exceeds 0.7, ReST adaptation is not carried out any
longer. By varying this parameter one can effectively con-
trol forgetting in the ReST layer H . The results are shown
in Fig. 7. We observe that, as t increases, ReST prototypes
are updated and subsequently protected against unnecessary
adaptation as the new class is sufficiently well recognized
by the read-out mechanism. This figure should be compared
to Fig. 6 where ReST protection is disabled.

3.5 Concept drift detection

For this experiment, we ask the question whether the ReST
layer is able to detect the presence of a new class in the train-
ing data, or, more precisely, the percentage of samples from
this class that can be recognized as ”outliers”. Using stan-
dard parameters and a hidden layer size ofK = 10, we train
a PROPRE2.0 architecture on all three datasets described in
Sec. 2.1 until t = tincr. For each dataset, class 0 (digit 0
for MNIST, the ”background” class for pedestrian detection
and the ”left” class for pose classification) is excluded from
training. At t > tincr, the previously excluded class is ex-
clusively presented whereas adaptation is entirely disabled
by setting α = 0, αLR = 0 and αd = 0. It is assumed that
outlier samples generate less BMU activity than inliers in
the ReST layer, therefore a threshold θout is applied to the
hidden layer a(H)

ni , and a sample n is labelled as an outlier if
maxia

(H)
ni < θout. By varying θout in a [0, 10] interval, graphs

reminiscent of ROCs can be obtained that indicate how ef-
fective this strategy is at detecting outliers while letting pass
inliers. These results are depicted, for the three datasets, in
Fig. 8. Please note that no supervision information has been
used to obtain these results which are essentially classifica-
tion results, only the intrinsic similarity grouping detected
by the hidden ReST layer. As can be expected, MNIST as
the cleanest dataset performs best here but performance on
the pedestrian datasets is acceptable as well.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12

cl
as

si
fic

at
io

n
ra

te
 o

n
al

l c
la

ss
es

iterations /1000

threshold=0.8
threshold=0

Fig. 9 Effect of the threshold θ during incremental learning. Shown is
classification performance on the test set of the pose classification task
during incremental learning of the left-out ”left” class with θ = 0.8
(red curve) and θ = 0 (green curve).

3.6 Concept drift detection for controlling readout

An interesting finding is that the readout layer can be strongly
”damaged” by the advent of concept drift of the hidden ReST
layer H is not managed appropriately. The addition of a
class the ReST layer was not trained on will, in general,
cause diffuse, low-level activity. The readout mechanism will
however try to map this essentially random activity to the
new class label, therefore destroying readout weights all over
the internal ReST layer. This is the reason behind the intro-
duction of the threshold θ in eqn.(41): it will suppress small
”random” activities until such time as the ReST layer has
partially converged on the new class, which is indicated by
super-threshold ReST activity. We show this effect exem-
plarily for the pedestrian pose classification task (the behav-
ior is exactly the same for all three datasets) in Fig. 9. Using
standard settings and a hidden layer size ofK = 10, we train
the PROPRE2.0 architecture on all classes but the ”left”
class until tincr. Subsequently, we add the ”left” class, one
time with θ = 0.8 and another time using θ = 0. In parallel,
we monitor the classification accuracy over time on the test
(in which all classes are present) set every 1000 iterations.
Results can be observed in Fig. 9 and show markedly infe-
rior performance when no threshold is used. We can there-
fore conclude that thresholding does what it was meant to
do: it ”protects” the readout layer against concept drift ef-
fects.

3.7 ReST topology protection

As the focus of this article is on incremental learning scenar-
ios where a new class is abruptly introduced, it is important
to ensure the continued topological organization of the inter-
nal ReST layer H. As explained in Sec. 2.2, the ReST neigh-
bourhood radius is reduced from an initially large value S0

to an asymptotic value S∞ in order to guarantee topologi-
cally ordered prototypes. As seen in Sec. 3.1, S∞ needs to
be small in order to ensure good classification performance
of the whole architecture. Therefore, a dilemma presents it-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 15

Fig. 10 Left: topographic error etop over time when adding a new class, depending on whether ReST topology is ”protected” or not. Middle:
prototype changes at t = tincr + 1000 w.r.t. t = tincr, no topology preservation. Right: same diagram only this time with topology preservation.
We observe that transition in the latter case is smoother and no structural defects are introduced, which is further corroborated by the consistently
lower etop. The price is of course the ”overwriting” of a larger area of the original ReST layer.

self: adding a new class using S∞ will presumably be good
for immediate classification accuracy but may conceivably
introduce strong topological defects, breaking the assump-
tion that close-by prototypes are close in data space as well.
As this is the fundamental principle on which we build in-
cremental learning on top of the SOM model, the formation
of topological defects must be avoided by appropriate mech-
anism for ensuring long-term incremental learning capacity.
A simple way is to moderately increase the neighbourhood
radius to an in-between value of Sincr when a new class is
presented, and smoothly reducing it to S∞ over time. In
order to test whether this approach is necessary and, if so,
feasible, we conduct a simple experiment using the MNIST
benchmark: training is conducted normally (see Sec. 3) with
a hidden ReST layer size of K = 10 using all classes except
the class 0. In contrast to Sec. 3, we use parameter values of
θm = 0.1 to accelerate incremental learning. At t = tincr,
class 0 is presented exclusively for 6.000 iterations. The ex-
periment is conducted twice, one time with Sincr = 0.2 and
one time with Sincr = S∞ throughout the remaining exper-
iment. The development of the topographic error etop and
a visualization of the prototype modifications are given in
Fig. 10. They show that topological ordering is preserved
better when Sincr is higher (which of course incurs a lower
classification accuracy as more prototypes are overwritten).

4 Discussion and conclusion

The basic message of this article is that self-organized mod-
els like ReST are an extremely useful tool for performing in-
cremental learning if appropriately managed. We presented
the PROPRE2.0 architecture for incremental learning in very
high dimensions which draws its incremental learning ca-
pacity from its internal ReST layer. The internal ReST layer
exhibits localized and gradual update behavior as demon-
strated in Sec. 3.3 which avoids catastrophic forgetting, but
can also detect concept drift by BMU analysis (see Sec. 3.5.
Based on this ability, we presented PROPRE’s mechanisms

of controlling its ReST layer in order maintain topological
organization (see Sec. 3.7) and stability in the face of sam-
pling bias (see Sec. 3.4), and verified that they are neces-
sary ingredients when performing incremental learning with
SOM-like models.

The basic benefit of the new ReST model is its self-
adaptation capability which allows architecture parameters
like learning rates to be set in a task-independent way. It fur-
thermore permits a task-independent, probabilistic interpre-
tation of neural activities which is important in the context
of generic outlier or drift detection. Another technical ben-
efit is the existence of a C∞ energy function which ensures
convergence and allows the use of automatic gradient com-
putation and advanced gradient descent algorithms that are
offered by modern machine learning frameworks.

4.1 Performance comparison to other methods

Although the main purpose of this article was to present
points that make self-organized neural layers ideal candi-
dates for incremental learning, we can compare the results
presented in Sec. 3.1 to results presented in the literature, at
least for MNIST which is commonly used to benchmark in-
cremental learning. In particular, the works presented in [27]
and [60] use (among others) an experimental setup identi-
cal to the one presented here (termed ”D9-1” task), meaning
that initial training is conducted on all but one class, and re-
training on the remaining class. This is evaluated for a va-
riety of models, including EWC, LWTA, IMM and Dropout
(see Sec. 1.2). Furthermore, models like HAT[25] can be
excluded from this comparison since HAT assumes that it
is known whether a samples comes from initially-trained or
re-trained classes for selecting the proper readout weights
from the multi-head output layer.

Consulting Tab. 5 and [27], we conclude that PROPRE2.0
has a performance competitive to EWC, as evaluated in, and
outperforms all other methods which show dramatic catas-
trophic forgetting behavior.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Alexander Gepperth

4.2 Outlook

It is clear that incremental learning as performed here (first
train with P − 1 classes, then train with remaining class
only) would need to be complemented by a re-training phase
where all P classes are presented together in order to com-
pensate for ReST model units that now respond to the newly
added class, and indeed it has been shown in [10] that this is
a perfectly viable strategy. Other incremental learning meth-
ods such as LWPR who have adaptive model complexity can
avoid such steps as the addition of a new class does not im-
pair the representation of the ”old” ones as long as there is
little overlap. Since we wish, for reasons of real-world pro-
cessing capacity, to have constant model complexity guar-
anteeing a fixed upper bound on computational resources,
zero-loss incremental learning seems difficult, and it will be
interesting to devise efficient retraining strategies to counter
this.

Immediate next steps will, first of all, consist of creating
a deep PROPRE2.0 architecture, with many hidden ReST
layers, because currently PROPRE2.0 gives only mediocre
results on complex problems like COIL100 or SVHN, which
arguably require deep architecture for being well solved.
Technically, deep PROPRE2.0 could be realized by com-
plementing the ReST energy function by a supervised term.
To keep optimization feasible, this could again be cast as
a constrained optimization problem, where the supervised
gradient is forced to be parallel to the ReST gradient, or the
other way round. Finally, it will have to be investigated how
incremental learning can work in a deep architecture that
performs online learning, as layers can now converge at very
different times.

Most importantly, PROPRE2.0 and potential extension
will have to benchmarked in a thorough way on a large set
of difficult problems in order to ensure its applicability in a
convincing way.

References

1. A Gepperth and B Hammer. Incremental learning algorithms and
applications. 2016. 1

2. Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incre-
mental online learning in high dimensions. Neural computation,
17(12):2602–2634, 2005. 1

3. R.J. May, H.R. Maier, and G.C. Dandy. Data splitting for artifi-
cial neural networks using som-based stratified sampling. Neural
Networks, 23(2):283 – 294, 2010. 1

4. M. McCloskey and N. Cohen. Catastrophic interference in con-
nectionist networks: the sequential learning problem. In G. H.
Bower, editor, The psychology of learning and motivation, vol-
ume 24. 1989. 2, 3

5. R. Ratcliff. Connectionist models of recognition memory: con-
straints imposed by learning and forgetting functions. Psycholog-
ical Review, 97, 1990. 2, 3

6. RM French. Semi-distributed representations and catastrophic for-
getting in connectionist networks. Connect. Sci., 4, 1992. 2

7. RM French. Connectionist models of recognition memory: con-
straints imposed by learning and forgetting functions. Psychol
Rev., 97(2), 1990. 2

8. McCloskey M and Cohen NJ. Catastrophic interference in connec-
tionist networks: the sequential learning problem. Psychol. Learn.
Motiv., 24, 1989. 2

9. T Kohonen. Self-organized formation of topologically correct fea-
ture maps. Biol. Cybernet., 43:59–69, 1982. 2, 4, 7

10. A Gepperth and C Karaoguz. A bio-inspired incremental learning
architecture for applied perceptual problems. Cognitive Computa-
tion, 2015. accepted. 2, 3, 9, 16

11. A Gepperth and M Lefort. Biologically inspired incremental
learning for high-dimensional spaces. In IEEE International Con-
ference on Development and Learning (ICDL), 2015. 2

12. Pallavi Kulkarni and Roshani Ade. Incremental learning from un-
balanced data with concept class, concept drift and missing fea-
tures: a review. International Journal of Data Mining and Knowl-
edge Management Process, 4(6), 2014. 2

13. Alexey Tsymbal. The problem of concept drift: definitions and
related work. Technical report, Computer Science Department,
Trinity College Dublin, 2004. 2

14. Y. M. Wen and B. L. Lu. Incremental learning of support vector
machines by classifier combining. In Proc. of 11th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD
2007), volume 4426 of LNCS, 2007. 3

15. Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar.
Learn++: An incremental learning algorithm for supervised neural
networks. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 31(4):497–508, 2001. 3

16. N. Sharkey and A. Sharkey. An analysis of catastrophic interfer-
ence. Connection Science, 7(3-4), 1995. 3

17. R. M. French. Dynamically constraining connectionist networks
to produce distributed, orthogonal representations to reduce catas-
trophic interference. In Proceedings of the Sixteenth Annual Con-
ference of the Cognitive Science Society. 1994. 3

18. J. Murre. The effects of pattern presentation on interference in
backpropagation networks. In Proceedings of the 14th Annual
Conference of the Cognitive Science Society. 1992. 3

19. C. Kortge. Episodic memory in connectionist networks. In Pro-
ceedings of the 12th Annual Conference of the Cognitive Science
Society. 1990. 3

20. Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,
and Yoshua Bengio. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013. 3

21. J. Krushke. ALCOVE: An exemplar-based model of category
learning. Psychological Review, 99, 1992. 3

22. S. Sloman and D. Rumelhart. Reducing interference in distributed
memories through episodic gating. In A. Healy and S. Kossly-
nand R. Shiffrin, editors, Essays in Honor of W. K. Estes. 1992.
3

23. German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan,
and Stefan Wermter. Continual lifelong learning with neural net-
works: A review. arXiv preprint arXiv:1802.07569, 2018. 3

24. Alexander Gepperth and Barbara Hammer. Incremental learning
algorithms and applications. European Symposium on Artificial
Neural Networks (ESANN), (April):357–368, 2016. 3

25. Joan Serra, Didac Suris, Marius Miron, and Alexandros Karat-
zoglou. Overcoming catastrophic forgetting with hard attention
to the task. In Proceedings of the 35th International Conference
on Machine Learning, pages 4548–4557. PMLR, 2018. 3, 4, 15

26. Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes,
and Christopher Kanan. Measuring catastrophic forgetting in neu-
ral networks. In Thirty-Second AAAI Conference on Artificial In-
telligence, 2018. 3

27. B Pfülb and A Gepperth. A comprehensive, application-oriented
study of catastrophic forgetting in dnns. In International Confer-
ence on Learning Representations (ICLR), 2019. accepted. 3, 15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 17

28. Boya Ren, Hongzhi Wang, Jianzhong Li, and Hong Gao. Life-
long learning based on dynamic combination model. Applied Soft
Computing Journal, 56:398–404, 2017. 3

29. Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori
Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and Daan
Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017. 3

30. Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Con-
tinual learning with deep generative replay. In Advances in Neural
Information Processing Systems, pages 2990–2999, 2017. 3

31. Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired
model for incremental learning. arXiv preprint arXiv:1711.10563,
2017. 3

32. Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H Lampert. iCARL: Incremental classifier and repre-
sentation learning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5533–5542. IEEE, 2017.
3

33. Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless
sequential learning. arXiv preprint arXiv:1806.05421, 2018. 3, 5

34. Rupesh Kumar Srivastava, Jonathan Masci, Sohrob Kazerounian,
Faustino Gomez, and Jürgen Schmidhuber. Compete to Com-
pute. In Advances in Neural Information Processing Systems,
pages 2310–2318, 2013. 3, 5

35. James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Ve-
ness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John
Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceed-
ings of the National Academy of Sciences, page 201611835, 2017.
3, 5

36. Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and
Byoung-Tak Zhang. Overcoming catastrophic forgetting by in-
cremental moment matching. In Advances in Neural Information
Processing Systems, pages 4652–4662, 2017. 3, 5

37. Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian,
Faustino Gomez, and Jürgen Schmidhuber. Compete to com-
pute. In Advances in neural information processing systems, pages
2310–2318, 2013. 3

38. Amir Rosenfeld and John K Tsotsos. Incremental learning through
deep adaptation. arXiv preprint arXiv:1705.04228, 2017. 3

39. Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. In-
cremental learning of object detectors without catastrophic forget-
ting. arXiv preprint arXiv:1708.06977, 2017. 3

40. Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H
Lampert. icarl: Incremental classifier and representation learning.
In Proc. CVPR, 2017. 3

41. Hyo-Eun Kim, Seungwook Kim, and Jaehwan Lee. Keep and
learn: Continual learning by constraining the latent space for
knowledge preservation in neural networks. arXiv preprint
arXiv:1805.10784, 2018. 3

42. S. Vijayakumar and S. Schaal. Locally weighted projection re-
gression: An o(n) algorithm for incremental real time learning in
high-dimensional spaces. In International Conference on Machine
Learning, 2000. 3, 4

43. D. Nguyen-Tuong and J. Peters. Local gaussian processes regres-
sion for real-time model-based robot control. In IEEE/RSJ Inter-
national Conference on Intelligent Robot Systems, 2008. 3

44. O. Sigaud, C. Sagaün, and V. Padois. On-line regression al-
gorithms for learning mechanical models of robots: A survey.
Robotics and Autonomous Systems, 2011. 3

45. M. Butz, D. Goldberg, and P. Lanzi. Computational complexity
of the xcs classifier system. Foundations of Learning Classifier
Systems, 51, 2005. 3

46. T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer. Incremental
local online gaussian mixture regression for imitation learning of
multiple tasks. 2010. 3

47. Gina G Turrigiano and Sacha B Nelson. Homeostatic plasticity
in the developing nervous system. Nature Reviews Neuroscience,
5(2):97, 2004. 4

48. Nicholas J. Butko and Jochen Triesch. Learning sensory repre-
sentations with intrinsic plasticity. Neurocomputing, 70(7):1130 –
1138, 2007. Advances in Computational Intelligence and Learn-
ing. 4

49. György Buzsáki and Kenji Mizuseki. The log-dynamic brain: how
skewed distributions affect network operations. Nature Reviews
Neuroscience, 15(4):264, 2014. 4

50. Sergey Ioffe and Christian Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal covariate shift.
In International conference on machine learning, pages 448–456,
2015. 4

51. Tom M Heskes and Bert Kappen. Error potentials for self-
organization. In Neural Networks, 1993., IEEE International Con-
ference on, pages 1219–1223. IEEE, 1993. 4, 7

52. Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,
and Yoshua Bengio. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013. 4

53. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. In Intelligent Signal
Processing, pages 306–351. IEEE Press, 2001. 5

54. M. Enzweiler and D.M. Gavrila. Monocular pedestrian detection:
Survey and experiments. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 31(12):2179–2195, 2009. 5

55. N. Dalal and B. Triggs. Histograms of oriented gradients for hu-
man detection. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1,
pages 886–893. IEEE, 2005. 5

56. M Lefort, T Hecht, and A Gepperth. Using self-organizing maps
for regression: the importance of the output function. In European
Symposium On Artificial Neural Networks (ESANN), 2015. 8

57. Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016. 9

58. Daniel Polani. Measures for the organization of self-organizing
maps. In Self-Organizing neural networks, pages 13–44. Springer,
2002. 11

59. A Gepperth. Catastrophic forgetting: still a problem for deep neu-
ral networks. In IEEE International Joint Conference on Neural
Networks (IJCNN), 2018. 12

60. B Pfülb, A Gepperth, S Abdullah, and A Krawczyk. Catastrophic
forgetting: still a problem for dnns. In International Conference
on Artificial Neural Networks (ICANN). 15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Alexander Gepperth

Appendix A

Figs. 11, 12, 13 give a detailed comparison of all neural activities in a ReST layer with and without self-adaptation. This is a
complement to the experiments in Sec. 3.2 which was shifted to the appendix for reasons of readability.

Fig. 11 Effects of self-adaptation on hidden layer ReST activities for the pose classification task (”poses”). Self-adaptation is enabled in the upper and
disabled in the lower diagram. Each diagram includes an activity histogram for every ReST neuron, giving 10×10=100 histograms. The interpretation of
individual is identical to the one in Fig. 5. In particular, the targeted log-normal distribution is superimposed as a solid green line.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Incremental learning with a homeostatic self-organizing neural model 19

Fig. 12 Effects of self-adaptation on hidden layer ReST activities for the pedestrian detection task (”peddet”). Self-adaptation is enabled in the upper and
disabled in the lower diagram. Each diagram includes an activity histogram for every ReST neuron, giving 10×10=100 histograms. The interpretation of
individual is identical to the one in Fig. 5. In particular, the targeted log-normal distribution is superimposed as a solid green line.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Alexander Gepperth

Fig. 13 Effects of self-adaptation on hidden layer ReST activities for MNIST. Self-adaptation is enabled in the upper and disabled in the lower diagram.
Each diagram includes an activity histogram for every ReST neuron, giving 10×10=100 histograms. The interpretation of individual is identical to the one
in Fig. 5. In particular, the targeted log-normal distribution is superimposed as a solid green line.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

