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Abstract—Building upon prior results, we present an alterna-
tive approach to efficiently classifying a complex set of 3D hand
poses obtained from modern Time-Of-Flight-Sensors (TOF). We
demonstrate it is possible to achieve satisfactory results in spite
of low resolution and high noise (inflicted by the sensors) and a
demanding outdoor environment. We set up a large database of
pointclouds in order to train multilayer perceptrons as well as
support vector machines to classify the various hand poses. Our
goal is to fuse data from multiple TOF sensors, which observe the
poses from multiple angles. The presented contribution illustrates
that real-time capability can be maintained with such a setup as
the used 3D descriptors, the fusion strategy as well as the online
confidence measures are computationally efficient.

Index Terms—gesture recognition, support vector machines,
neural networks, efficient classification, tof sensors

I. INTRODUCTION

Hand gestures or hand poses are gradually introduced into
everyday life, be it by e.g. Kinect-type sensors in our homes
or public places to interact with various kinds of systems.
There is a multitude of approaches exploiting the advantages
of the various kinds of sensors coming into use but since
daylight applicable Time-of-flight(ToF) sensors are becoming
less expensive and steadily improve in terms of signal quality,
the range of applications naturally increases. Opposed to other
approaches, we are able to set up a system working under
daylight conditions whilst having more challenging outdoor
parameters to deal with. In this article we present a real-
time applicable system to classify a set of ten static hand
poses (contrasted to hand gestures being dynamic). This is
achieved by fusing the data coming from two ToF sensors.
Each camera’s data is captured and transformed via a chosen
pointcloud descriptor which is again used as input for the
training of a multilayer perceptron (MLP) and a support
vector machine (SVM). We build upon previously acquired
understandings[1] namely the fact, that our approach leads to
satisfying results when carefully choosing the right parameters.
We hereby demonstrate that we are able to significantly boost
our results by utilizing a support vector machine and give
an outline of how this may impact our upcoming results
in the near future. We will first discuss the related work
relevant for our research (Sec. II) and then go on to describe
the sensors and the used database in Sec. III. Subsequently,
in Sec. IV we will give an account of the used different

holistic point cloud descriptors and explain the meaning of
the parameter variations we will test. The key questions we
will investigate in Sec. VI and Sec. VI-B concern the proper
choice of parametrized descriptors, furthermore the added
value of a second ToF sensor, and lastly the issue of efficient
neural network based fusion strategies which are contrasted
to the support vector classification techniques. In Sec. VII,
the obtained results will be discussed in the light of these
questions.

II. RELATED WORK

When recognizing hand poses, depth sensors allow for a
simple and robust solution, as they can easily deal with tasks
as segmentation of the hand/arm from the body by simple
thresholding as described in [2]. Several studies have made
use of this feature with different approaches to segmentation.
Moreover it is possible to make use of the depth informa-
tion to distinguish between ambiguous hand postures [3].
Nevertheless, it has not been possible to achieve satisfactory
results utilizing only a single depth sensor. Either the range
of application was limited or the performance results were
dissatisfying. Usually a good performance result was achieved
with a very limited pose set or if designed for a specific
application [4]. ToF-Sensors - although working at stereo-
frame rate - generally suffer from a low resolution which of
course makes it difficult to extract proper features. Improved
results can be achieved when fusing Stereo Cameras with
Depth Sensors, e.g. in [5]. In [6] a single ToF-Sensor is used
to detect hand postures with the Viewpoint Feature Histogram.
Various approaches make use of the Kinect’s ability to extract
depth data and RGB data simultaneously [7]. However this
approach relies heavily on finding hand pixels in order to
be able to segment the hand correctly. Moreover, approaches
utilising the Kinect sensor will always suffer from changing
lighting conditions which in our case is no drawback as ToF-
sensors show robust results in such situations. [8] also make
use of the Kinect sensor’s ability to acquire RGB and depth
data simultaneously albeit using a hand model as a basis for
hand pose detection. Nevertheless this algorithm also relies
on finding skin-colored pixels to allow for segmentation in
2D and 3D as well as tracking the hand.



Beneath the technology development research is conducted
on how to design intuitive user interfaces. Bailly et al. investi-
gate and compare different menu techniques in [9]. Wilson and
Benko developed a system with several projectors and depth
cameras named LightSpace [10]. tables, etc. by gestures as
these are recognized based by several cameras from the Kinect.
are not applicable for reasons of hygiene, where a sterile user
interface is required. In [11] such approaches are validated.

In-car scenarios have been developed for several years as
the the driver can keep his hands close to the steering wheel
while being able to focus on the surrounding environment.
Pointing capabilities could be interesting to control content
in the head-up displays. A good overview is given in [12].
Human-Robot Interaction [13]

Such scenarios demand robust data extraction techniques
which is provided by the aforementioned ToF-sensor. Our ap-
proach shows that it is possible to achieve satisfactory results
relying solely on depth data when detecting various hand
poses. In merging information from a second depth sensor
we are able to boost our results significantly while always
retaining the applicability under various lighting conditions -
one of the greatest advantages of ToF-sensors compared to e.g.
the frequently used Kinect sensor.

To our knowledge there exist no profound studies examining
the fusion of data coming from multiple ToF-sensors which
is then used to solve the given task of classifying the set of
hand poses by neural networks and support vector machines.

III. DATABASE

The data was recorded using two ToF-Sensors (Figure 1
and 2) of type Camboard nano which provides depth images
of resolution 165x120px with a frame rate of 90fps. The
illumination wavelength is 850nm which makes the cameras
applicable in various light conditions whilst maintaining ro-
bustness versus daylight interferences. Since the ToF-principle
works by measuring the time the emitted light needs to travel
from the sensor to an object and back pixel-wise the light
is modulated by a frequency of 30MHz in order to be able
to distinguish it from interferences. In a multi-sensor setup
however this may lead to a distortion of measurements since
both sensors have the same modulation frequency. To avoid
such measurement errors, the data was recorded by taking
alternating snapshots from each sensor. As can be seen in
Figure 1 the cameras are mounted in a fixed position at a
distance of approx 49.5cm and a perpendicular angle from the
recorded object. This allows for a recording of the database
such that the hand can be placed in an equal distance of about
35cm from each camera to the centroid of the resulting point
cloud data set and therefore each camera can also be calibrated
to its needs. For the current experiments, focus has been put on
the recognition of static hand gestures which are contrasted to
dynamic hand gestures. Each set of poses was recorded with
a variation of the hand posture in terms of translation and
rotation of the hand and fingers. This results in an alphabet
of ten hand poses: point, fist, grip, L, stop and counting from
1-5 (cf. Figure 2). For each pose, a set of 2000 point clouds

was recorded for each camera. Since we recorded hand poses
from four different persons independently, this yields a data
set of 160.000 samples. Additionally, we rotated one camera
by 60◦ towards the other camera and recorded the same set
now from an angle of 30◦ and compared the results to each
other resulting in another data set of 160.000 point clouds.
The database is randomly split into two parts of equal size for
training and evaluation purposes.

IV. POINT CLOUD DESCRIPTORS

All used global descriptors were calculated using methods
of the publicly available Point Cloud Library (PCL).

A. The ESF-Descriptor

The ESF-Descriptor (Ensemble of Shape Function) [14] is
a global descriptor which does not rely on the calculation of
the normals. First, 20000 points are sub-sampled from the
input point cloud. Then, the algorithm repeatedly samples
three points, from which four simple measures are calculated,
which are discretized and used for histogram calculation.

B. The VFH-Descriptor

The VFH-Descriptor(Viewpoint Feature Histogram) [15]
is a global descriptor partially based on the local FPFH
(Fast Point Feature Histogram)[16] descriptor. It uses normal
information, taking into consideration the view angle between
the origin of the source and each point’s normal. It furthermore
includes the SPFH (Simplified Point Feature Histogram) for
the centroid of the cloud, as well as a histogram of distances
of the points in the cloud to the centroid. When calculating
the VFHs for the various hand poses we have to take into
consideration the influence of the normals on the results. In
the described case the search parameter r guides the influence
of the surrounding for the calculation of the normal. Choosing
a small r can result in low descriptive power while a large r
results in high computational load. We empirically chose a
value of r = 5cm and denote the resulting descriptor VFH5.

C. Neural network classification and fusion

With M cameras, N descriptors will be produced per frame
(here: M=N) according to the methods described above. We
use a multilayer perceptron (MLP) network[17] to implement
the multi-class decision, which is either based on the the
concatenation of all N descriptors (”early fusion”), or on
each descriptor individually, with a subsequent combination
of results (”late fusion”). The MLP training algorithm is
”RProp”[17], with standard hyperparameters η+ = 1.2, η− =
0.6, ∆0 = 0.1, ∆min = 10−10 and ∆max = 5. Network
topology is NK-150-10 (hidden layers are fixed to 1[17],
hidden layer sizes from 10-500 were tested), K indicating
the method-dependent descriptor size, and N the number of
cameras, here N = 2. Us usual, activation functions are
sigmoid throughout the network. MLP classifiers have 10
output neurons (one per gesture class) with activities oi. Thus,
the final classification decision is obtained by taking the class
of the neuron with the highest output. However, we do not



Fig. 1: The current setup for 90◦
Fig. 2: The hand pose database

necessarily wish for every classification to be taken seriously,
and we define several confidence measures conf({oi}) to this
effect. Final decisions are thus taken in the following way:

class =

{
argmaxioi if conf({oi}) > θconf

no decision else

We test three ad hoc confidence measures, which perform a
mapping from R10 → R: ”confOfMax”, ”diffMeasure” and
”varianceMeasure”. Each of these measures is derived from
the idea of approximating an entropy calculation, based on
the information-theoretic idea that low entropy means high
information content. The precise definitions are as follows:

confOfMax({oi}) = max oi
diffMeasure({oi}) = maxi oi −max2i oi

varianceMeasure({oi}) =
1

N

∑
i

(oi − E({oi}))2 (1)

where max2i oi indicates the second-strongest maximum over
the neural outputs. For performing late fusion, that is, ob-
taining two independent classifications o1i , o

2
i based on each

camera’s features, we simply calculate the arithmetic mean
of both output vectors: oFi = 0.5(o1i + o2i ). This intrinsically
takes into account the variance in each response, as an output
distribution strongly peaked on one class will dominate a flat
(or less peaked) distribution. The resulting output distribution
oFi can then be subjected to the decision rule of Eqn. (1).

V. SUPPORT VECTOR CLASSIFICATION

In its nature a support vector machine (SVM) is a binary
classifier, yet there exist several methods to extend it for
multi-class problems (e.g. one-versus-all or one-vs-one). In our
experiments we chose to use the one-vs-one ([18]) approach in
combination with crossvalidation. The method can be roughly
described as follows; let N be the number of classes, x ∈ Rk
a feature vector and kp : R × R → R an arbitrary kernel
parametrized by a set p. In one-versus-one the amount of
SVMs to be trained is N(N − 1)/2 =: P , i.e. one trains
an SVM for each possible two-class combination. Formally
stated, if x̃i,γ,δ represents the i-th support vector (SV) for
classes γ, δ, α̃i,γ,δ the corresponding coefficient and bγ,δ the

bias. Then the multi class classification result is given by first
evaluating

c = (1 + sgn(bγ,δ +

Mγ,δ∑
i

α̃i,γ,δkp(x̃i,γ,δ, x)))/2 (2)

followed by evaluating

vγ,δ,x = cγ + (1− c)δ (3)

which will assign vγ,δ,x the value of either γ or δ. This can be
seen as a vote for one of the involved classes, thus in a second
step the class with the most votes among the P SVMs is
determined and considered to be the final classification result.
In order to measure the performance of the obtained SVM, i.e.
the SVM for a certain parameter set p, we use the following
n-fold crossvalidation (CV) strategy. Let S be the CV data set,
first this S will be split into n equal sized disjoint subsets S1

by randomly selecting elements from S. If n - |S| then only
n− 1 subsets will be created. Afterwards a multi class SVM
will be trained on S\Si followed by a performance evaluation
on Si. As the individual SVMs for a fixed parameter set will (if
n | |S|) be evaluated on all subsets, the overall result will give
a prediction of how good the SVM will perform on new data.
Thus the crossvalidation corresponds to a parameter estimator.
Finding the correct parameter set is a difficult and time
consuming task, the canonical method is the so called grid
search. If we assume a simple kernel k(u, v) =< u, v >,
the only parameter for SVM training remains the constant
C 3 [Cs, Ce], which regulates the trade-off between classi-
fication errors and weight vector length in the transformed
feature space (with e.g. a simple max-loss)

min
w

(
||w||2 + C

∑
i

max(0, 1− yif(xi))

)
(4)

During a grid search one probes with selected C values how
the SVM performs, in our experiments we used an exponential
sampling of [Cs, Ce]. This strategy corresponds to a brute force
search and quickly becomes less efficient for parametrized
kernels as e.g. the gauss kernel

k(u, v) = exp(−γ||u− v||2) (5)



The required time for such an approach can take between hours
up to days, yet once the range for a specific type of data has
been narrowed down, one can utilize this knowledge for future
training procedures.

VI. EXPERIMENTS

A. Neural Networks

We implement a multilayer perceptron (MLP) as described
in Sec. IV-C using the freely available OpenCV library[19]
and its C++ interface. Each experiment is performed 10
times with different initial conditions for the MLP, and the
best result is retained. In these experiments, we systemat-
ically evaluate the influence of different confidence mea-
sures(”confOfMax”,”diffMeasure” or ”varianceMeasure”, see
Sec. IV-C) on the fusion strategy (”add”, see Sec. IV-C) while
measuring the performance of the first camera, the second
camera as well as an ”early fusion” or a ”late fusion” of the
two cameras. In order to test the influence of different 3D
descriptors, we perform an identical evaluation except that the
VFH5 point cloud descriptors is replaced by ESF. Additionally,
we perform the same evaluation on an analogous database
using the VFH5 descriptor where the angle between ToF
sensors is 90 deg. Results are evaluated by default according to
whether one among the S strongest output neurons coincides
with the true class of a point cloud (”S-peak measure”). Unless
explicitly states, we use S = 1. Results are given in Fig. 3.
Several important aspects may be perceived: first of all, fusion
strongly improves results in comparison to any single sensor,
w.r.t. to the efficiency of sample rejection but also in absolute
terms when no samples are rejected, corresponding to the
intersection of the graphs with the right boundary of the
coordinate system. Secondly, early fusion has slightly superior
performance than late fusion but the difference is marginal,
potentially giving a preference to late fusion due to reduced
computational complexity. Lastly, the different confidence
measure are consistently ranked throughout all experiments,
with the ”diffMeasure” being the best-performing one, closely
followed by ”confOfMax”. This is encouraging as especially
confOfMax is computationally very lightweight, again favor-
ing real-time execution. Thirdly, the angle between cameras
does not seem to play a crucial role even though individual
camera results differ considerably. Here, the beneficial aspects
of fusion can be clearly demonstrated. And lastly, the ESF
descriptor seems to perform slightly better than VFH5, which
might lead us to prefer this descriptor as it is computationally
simpler and requires constant execution time regardless of
point cloud size. An interesting observation is that the two-
peak measure enormously improves classification rates in all
conditions. This is very useful for an application, especially
for temporal filtering, as the behaviour of the second-strongest
output can obviously also provide valuable information about
the true pose class.

Training times are around 10min per single experiment,
which outperforms an equivalent SVM-based (Support Vector
Machine) ”one-versus-all” implementation by a large margin.
Average execution times vary between 1-5 Hz depending

of the use of the descriptor (ESF: 0.2s/0.2s for 30/90 deg.
between cameras, VFH5: 0.4s/0.9s) whereas NN execution
time is < 0.005s. On average the point clouds contain
1300-1600 points, depending on the angle between cameras
and the distance of the recorded hand to each camera.

B. Support Vector Machines

In our experiments we evaluated two types of kernels, the
ordinary scalar product and the gauss kernel. The parameters
have been obtained via a grid search over an exponentially
sampled parameter space. The crossvalidation set for ESF
descriptors consisted of a total of 40000 feature vectors
x ∈ R1280. All numerical values were sampled with double
precision and special attention towards compare operations.
In order to narrow down the search range we first applied
a coarse crossvalidation with n = 5, as shown in [20] this
reduces the variance of the obtained parameters yet increases
the corresponding bias. Thus, once the area had been narrowed
down we commenced a thorough gridsearch with n = 100.
This method can be regarded as a two stage approach, Fig.
4 depicts the first stage results for an RBF kernel and VFH
descriptors. One can see that the kernel parameters influence
on the classification result becomes smaller for large penalty
factors.
Using the scalar product, the best SVM obtained a classifica-
tion performance of ≈ 98.7% for 30 and 98.8% for 90 degrees.
The time needed for the grid search was approximately 16
hours. Regarding the gauss kernel we obtained a classification
rate of 99.8% for 30 and 99.6% for 90 degrees with a total
training time of approximately 2 days.
The setup and evaluation procedure for the VFH descriptors
is identical to the ESF case. The only difference lies in the
reduced size of the VFH descriptors which contain only 616
elements. The results are summarized in table I. It must be

Descriptor ESF 30 ESF 90 VFH 30 VFH 90
Classif. rate scalar kernel 98.7% 98.8% 96.9% 94.2%
Classif. rate gauss kernel 99.8% 99.6% 98.8% 93.1%

TABLE I: Classification results for both descriptor types. The
SVMs were obtained through a two-stage grid search.

mentioned that the VFH descriptors allowed a much faster
parameter estimation due to the reduced data volume. Using
the scalar product the needed time was 3 hours while ≈ 23
hours were needed for the gauss kernel. Although training has
proven to be a slow procedure, classification of a single feature
vector can be done very efficiently and takes only fractions of
a second (e.g. 4µs / 250kHz for ESF descriptors on a modern
CPU).

VII. DISCUSSION AND OUTLOOK

Analyzing the results in the light of the key research
questions formulated in Sec. I, we can state that, first of all,
fusion with data from a second ToF sensor improves results
tremendously in all investigated conditions, camera setups
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Fig. 3: Experimental results. First row: VFH5 descriptor, 30 degrees between cameras. Second row: VFH5, 90 degrees
between cameras. Third row: ESF descriptor, 30 degrees between cameras. Last row: Same as third row, only classification
errors evaluated using the two-peak measure, see text. In all rows, the order of diagrams is, from left to right: 1,2) first/second
sensor 3) late fusion 4) early fusion. Individual plots show the effects of varying confidence thresholds on classification
accuracies for several possible online confidence measures. We do not show the method-dependent confidence thresholds but
rather the acceptance rates which vary if thresholds are varied. At the far right of each diagram, we recover the classification
performance obtained when not rejecting anything, naturally leading to reduced performance.
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Fig. 4: Development of classification rate during a grid search
for VFH descriptors using an RBF kernel. For large values of
the penalty factor C the kernel parameter γ looses some of its
significance.

and point cloud descriptors. Interestingly, late fusion performs
globally just as well as early fusion, which is important as it
has the potential to be much more computationally efficient.
However, even when considering individual ToF sensors, the
computation of confidence measures from output activity
distributions is of tremendous impact as well. Confidence can
be efficiently extracted at execution time (no need to see the
class labels for this) and used to avoid classification decisions
when they are likely to be incorrect anyway. We tested a
number of information-theoretically motivated measures and
luckily the most efficient measures seem to perform best.
Concerning the influence of the used 3D descriptors: the ESF
descriptor yields best performance with or without fusion.
As this descriptor does not require normals computation
and has approximately constant scaling behavior w.r.t. point
cloud size, it is the most appropriate choice for real-time
applications in the targeted automotive domain.

The use of support vector machines showed classification



rates similar to these of neural networks. Gauss (or RBF)
kernels are very common when it comes to SVM-based
classification as they usually show the better results. In our
case we found that for ESF descriptors, the standard scalar
product allows the training of SVMs with a recognition rate
close to RBF-based SVMs. The difference between both
kernel types lies in the range of ≈ 1% (with the RBF SVMs
being better). There is effectively no difference between ESF
descriptors for 30 or 90 degrees. The VFH descriptors showed
very similar results, they as well lie only slightly apart when
comparing both kernel types. Interestingly the VFH descriptor
degenerates in its classification power for the 90 degree case.
Overall the VFH descriptors seem to perform less effectively
compared to the ESF features, which seems to indicate that
the ESF descriptor retains more of the samples variance.
Thus, using the scalar product, one can construct classifiers
which are faster and structurally simpler than neural networks.
As only a single scalar product has to be evaluated compared
to more complex matrix operations of neural networks. Yet
with the inherent drawback of huge training times one has to
carefully assess the applicability of support vector machines.
Neural networks should be favoured especially if it comes to
online or mini-batch learning, whereas SVMs should be used
in areas which do not require retraining and rapid deployment.

Summarizing, we have presented an adaptive data fusion
approach for multiple ToF sensors addressing the generic
task of 3D point cloud categorization in a multi-class setting.
The fact of using a neural network for this purpose is of
high advantage (besides very favorable database size scaling
and multi-class issues) as the ensemble of normalized output
confidences contains valuable information as well that can
be efficiently exploited at runtime to improve results. Neural
network learning furthermore removes the need for precise
multi-sensor calibration as long as only categorization is
targeted. Further work will include the comparison of both
classification approaches in an automotive environment and
the inclusion of a much larger database. Moreover we want
to compare the live performance of our system under more
challenging environmental conditions.
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