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Abstract— We present a system for 3D hand gesture recog-
nition based on low-cost time-of-flight(ToF) sensors intended
for outdoor use in automotive human-machine interaction. As
signal quality is impaired compared to Kinect-type sensors,
we study several ways to improve performance when a large
number of gesture classes is involved. Our system fuses data
coming from two ToF sensors which is used to build up a
large database and subsequently train a multilayer perceptron
(MLP). We demonstrate that we are able to reliably classify a
set of ten hand gestures in real-time and describe the setup of
the system, the utilised methods as well as possible application
scenarios.

I. INTRODUCTION

As ”intelligent” devices enter more and more areas of
everyday life, the issue of man-machine interaction becomes
ever more important. As interaction should be easy and
natural for the user and also not require a high cognitive
load, non-verbal means of interaction such as hand gestures
will play a decisive role in this field of research. With
the advent of low-cost Kinect-type 3D sensors, and more
recently of low-cost ToF sensors (400-500e) that can be
applied in outdoor scenarios, the use of point clouds seems
a very logical choice. This presents challenges to machine
learning approaches as the data dimensionality and sensor
noise are high, as well as the number of interesting gesture
categories. In this article we build upon earlier results [1] and
demonstrate how a system can be developed and integrated
into a car in order to be able to classify a gesture alphabet of
ten hand poses. Our approach is purely data-driven, i.e. by
extending and applying a Pointcloud descriptor to our needs
we are able to set up a real-time applicable system which is
robust versus daylight interferences, invariant to rotation and
translation problems and moreover works without the need to
formalise a possibly complicated hand model. We will first
discuss the related work relevant for our research (Sec. II)
and then go on to describe the setup of our system within
an automobile environment. Subsequently we describe the
sensors and the used database in Sec. IV. In Sec. V we go
on to give an account of the used different holistic point
cloud descriptors and explain the meaning of the parameter
variations we will test. Sec. VI summarises the implemented
NN classes and the choice of parameters. The key questions
we will investigate in Sec. VII concern the generalisation
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error of the NN and the performance of our system in a
live demonstration as well as offline and then we outline the
procedure of the Live Demonstration in VIII. Lastly in IX
we give an outlook of potential improvements of our system
as well as our next steps.

II. RELATED WORK

Depth sensors allow for an easy and robust solution
for recognising hand poses as they can easily deal with
tasks as segmentation of the hand/arm from the body by
simple thresholding as described in [2]. Several surveys
have made use of this feature with various approaches to
segmentation. Moreover it is possible to make use of the
depth information to distinguish between ambiguous hand
postures [3]. Nevertheless, it has not been possible to achieve
satisfactory results utilising only a single depth sensor. Either
the range of application was limited or the performance
results were dissatisfying. Usually a good performance result
was achieved with a very limited pose set or if designed for
a specific application [4]. However for our purposes we need
to employ several hand poses which are partly very difficult
to disambiguate. ToF-Sensors - although working at stereo-
frame rate - generally suffer from a low resolution which of
course makes it difficult to extract proper features. Improved
results can be achieved when fusing Stereo Cameras with
Depth Sensors, e.g. in [5]. In [6] a single ToF-Sensor is
used to detect hand postures with the Viewpoint Feature
Histogram.
Various approaches make use of the Kinect’s ability to extract
depth data and RGB data simultaneously [7]. However this
approach relies heavily on finding hand pixels in order to
be able to segment the hand correctly. Moreover, approaches
utilising the Kinect sensor will always suffer from chang-
ing lighting conditions which in our case is no drawback
as ToF-sensors show robust results in such situations. [8]
also make use of the Kinect sensor’s ability to acquire
RGB and depth data simultaneously albeit using a hand
model as a basis for hand pose detection. Nevertheless
this algorithm also relies on finding skin-coloured pixels to
allow for segmentation in 2D and 3D as well as tracking
the hand. To our knowledge there is no comparable work
which is placed in the automotive environment. [9] give a
extensive overview of the methods and applications used
for hand gesture recognition. One of their insights is that
most applications are in the field of robot control, interactive
displays/tabletops/whiteboards or sign language recognition.
In [10] a case study is made of how the Kinect can be
utilised to control E-Mail functions in a car through set of



Fig. 1: The Camboard nano
Fig. 2: A sample recording from the Live Demonstration

six hand gestures. While the results remain unclear, except
for the fact that gestures could be well accepted as a means
of control in a car, the gesture set remains small and the
effect of different lighting conditions on the results is not
discussed. More comprehensive overviews are given in [11]
and [12].

Beneath the technology development research is conducted
on how to design intuitive user interfaces. Bailly et al. inves-
tigate and compare different menu techniques in [13]. Wilson
and Benko developed a system with several projectors and
depth cameras named LightSpace [14].

In-car scenarios have been developed for several years as
the the driver can keep his hands close to the steering wheel
while being able to focus on the surrounding environment.
Pointing capabilities could be interesting to control content
in the head-up displays. A good overview is given in [15].

Such scenarios demand robust data extraction techniques
which is provided by the aforementioned ToF-sensor. Our
approach shows that it is possible to achieve satisfactory
results relying solely on depth data when detecting various
hand poses. In merging information from a second depth
sensor we are able to boost our results significantly while
always retaining the applicability under various lighting
conditions - one of the greatest advantages of ToF-sensors
compared to e.g. the frequently used Kinect sensor.

III. SYSTEM SETUP

We integrated two ToF Sensors into a car, both fixed to
the centre console and connected to a Laptop with a Linux
system installed, handling the computation task. Taking our
previous results into consideration, we found a 30 degree
angle for the setup of the cameras to be sufficiently suitable
in order to be able to disambiguate even the more difficult
hand poses. To this end, we placed one camera in the centre
of the console and the other one slightly shifted and rotated to
the right from the driver’s perspective due to obvious space-
requirements (cf. Figure 2). As opposed to our previous
research, we focus on recognising the subject’s (i.e. driver)
right hand for the desired hand poses. Therefore we defined
a desired Volume of Interest (VOI) within which we want
to identify hand poses. Due to driver behaviour, possible
range and convenience as well as obstacle occlusion (e.g.
steering wheel) our VOI is of trapezoidal shape with a depth

of 27-35cm, a maximum width of 60cm and a minimum
width of about 45cm enclosed by the FoV (Field of View)
of the camera frustum. The total height covered by our
cameras ranges from 30-35cm. It is important to note that
both cameras have been set up with the same parameters
in order to roughly have the same distance to the recorded
object as well as the same VOI at any given point t in time.
Furthermore we cover a space big enough to recognise the
most important movements in the car. Usually the driver has
his hand on the steering wheel or close to it or, in other
situations leans onto the armrest, which differs significantly
in position and allows for longer interaction with our system.
By defining our VOI as described, we are able to cover these
possibilities.

IV. THE DATABASE

The database was recorded using two ToF-Sensors (cf.
Figures 1 and 2) of type Camboard nano which provide depth
images of resolution 165x120px with a frame rate of 90fps.

The illumination wavelength is 850nm which makes the
cameras applicable in various light conditions whilst main-
taining robustness versus daylight interferences. Since the
ToF-principle works by measuring the time the emitted light
needs to travel from the sensor to an object and back pixel-
wise, the light is modulated by a frequency of 30MHz in
order to be able to distinguish it from interferences. In a
multi-sensor setup however this may lead to a distortion of
measurements since both sensors have the same modulation
frequency. To avoid such measurement errors, the data was
recorded by taking alternating snapshots from each sensor.
As can be seen in Figure 2 the cameras are mounted in a
fixed position at a distance of approx. 25cm and a 30 degree
angle from the recorded object. This allows for a recording
of the database such that the hand can be placed in an equal
distance of about 20cm - 45cm from each camera to the
centroid of the resulting point cloud data set and therefore
each camera can also be calibrated to its needs. For the
current experiments, focus has been put on the recognition
of static hand poses which are contrasted to dynamic hand
gestures. Each set of poses was recorded with a variation
of the hand posture in terms of translation and rotation of
the hand and fingers. Moreover the driver was able to place
her/his arm on the armrest which is reasonable in order



to allow for creating a reproducible scenario which is also
realistic in terms of applicability as possible (longer) user
interaction might well occur in this manner. This results in an
alphabet of ten hand poses: Counting from 1-5 and fist, stop,
grip, L, point denoted by a-j (cf. Figure 3). For each pose,
a set of 2000 point clouds was recorded for each camera.
Since we recorded hand poses from ten different persons
independently, this yields a data set of 400.000 samples. Each
person was asked to move and rotate the hand to a sufficient
degree as to ensure enough variance in the pointclouds. This
is needed, since our approach is meant to be as invariant to
translation and rotation as possible, also considering the fact
that hand size varies significantly between the probands.

The main advantage of using a ToF camera is that it
allows for outdoor use as e.g. contrasted to a Kinect. This
is well demonstrated in our database as well as in the live
demonstration as we recorded many samples over varying
lighting conditions during bright or dim daylight without
impeding the performance of the system. In the chosen
probands, both male and female, the size of the hand ranged
from 8,5cm - 9,5cm in width and from 17,0cm - 19,5cm in
length.

V. POINT CLOUD DESCRIPTORS

All used global descriptors were calculated using methods
of the publicly available Point Cloud Library (PCL) which
were adapted to our needs.

A. The PFH-Descriptor

The PFH-Descriptor (PFH-Histogram) [16] is a local de-
scriptor which relies on the calculation of the normals. It
is able to capture the geometry of a requested point for a
defined k-neighbourhood. So for a query point and another
point within this neighbourhood four values (the point fea-
tures or PFs) are being calculated, three of which are angle
values and the fourth being the euclidean distance between
these two points. The angle components are influenced by
each point’s normal so in order to be able to calculate them,
all the normals have to be calculated for all points in the
cloud. Therefore we are able to capture geometric properties
of a point cloud in a sufficient manner, depending on the
chosen parameters. These parameters have been thoroughly
examined in our previous work which led for example to an
optimal choice for the parameter n, the radius for calculation
of the sphere which encloses all points used to calculate the
normal of a query point. One major drawback is the fact
that the PFH-descriptor cannot be easily embedded into a
real-time applicable system as the computation cost becomes
too high, when we extend it to be a global descriptor. To
overcome this issue, we present a modification of the PFH-
Descriptor in the following section.

B. Modification of the PFH-Descriptor

Our version of the PFH-Descriptor makes use of its de-
scriptive power while maintaining the real-time applicability.
Using the PFH in a global sense would mean having to
enlarge the radius so that every two point pairs in the cloud

are used to create the descriptor. This quickly results in a
quadratically scaling computation problem as a single PFH-
calculus would have to be performed 10000 times for a point
cloud of 100 points. Given the fact that our point clouds
have a minimum size of 200 points up to 2000 points and
more, this is not feasible for our purposes. Therefore we
randomly choose 10000 point pairs and use the quantized PFs
to build a global 625-dimensional histogram. We calculate
one descriptor per camera and concatenate all obtained
descriptors in order to serve as inputs to the neural network.

VI. NEURAL NETWORK CLASSIFICATION AND FUSION

With M cameras, our system produces M descriptors
per frame according to the methods described above. We
use a multilayer perceptron (MLP) network[17] to model
the multi-class classification function, either implicitly by
concatenating all N descriptors followed by NN classification
(”early fusion”), or explicitly, by performing classification
individually on each of the N descriptors and then combining
results (”late fusion”). Neural networks contain a bias unit
at each layer, the training algorithm is ”RProp”[17] with
hyperparameters η+ = 1.2, η− = 0.6, ∆0 = 0.1, ∆min =
10−10 and ∆max = 5. Network topology is NK-16-10
(hidden layer sizes from 10-500 were tested without finding
significant performance improvements), K indicating the size
of the used descriptors and N the number of cameras, here
N = 2. Activation functions are sigmoid throughout the
network. As the MLP classifiers have 10 output neurons,
corresponding to the 10 gesture classes, with activities oi,
the final classification decision is obtained by taking the class
of the neuron with the highest output. However, we do not
necessarily wish for every classification to be taken seriously,
and thus implement a simple extension based on a confidence
measure conf({oi}). Final decisions are thus either taken by
determining the neuron with maximal output, or by applying
the confidence measure in the following way:

class =

{
argmaxioi if conf({oi}) > θconf

no decision else

The confidence measure performs a mapping from R10 → R
and shall be denoted ”confOfMax”:

confOfMax({oi}) = max oi (1)

For performing late fusion, that is, obtaining two independent
classifications o1i , o

2
i based on each camera’s features, we

simply calculate the arithmetic mean of both output vectors:
oFi = 0.5(o1i + o2i ). This intrinsically takes into account the
variance in each response, as an output distribution strongly
peaked on one class will dominate a flat (or less peaked)
distribution. The resulting output distribution oFi can then be
subjected to the decision rule of Eqn. (1).

VII. THE EXPERIMENTS

The experiments were conducted in such manner as to test
the influence of the various parameters on the classification
results. We tested various settings for the NN parameters and
ended up having three layers of 1250, 16 and 10 neurons -



Fig. 3: The hand gesture database: A set of ten hand gestures, counting from 1-5 and fist, flat, grip, L, point

i.e. one hidden layer - for the input, hidden and output layer
respectively. The number of neurons for the hidden layer was
chosen as such because the overall performance of the NN
peaked at this value during the course of the experiments.

The used NN code was taken from the OpenCV library.
We used Rprop as the training algorithm and a sigmoid
activation function. The input for the network is formed by
taking the input cloud and create the customised descriptor
for it. Doing this for each camera and concatenating them
together forms the input which is fed into the NN. This
procedure is done for training, testing as well as for the live
demonstration described later on.

A. Baseline performance

The first experiment splits all gesture and person samples
50/50 for training and classification, which leads to an overall
recognition rate of 95 percent without even applying the
confidence measure as indicated in eqn.(1). Table I displays

a b c d e f g h i j
a 9503 87 17 14 11 48 28 4 129 104
b 96 9470 183 109 1 36 16 10 29 30
c 145 406 8913 181 27 21 45 46 97 20
d 19 64 107 9191 241 22 138 56 8 18
e 21 15 15 191 8986 8 679 41 11 8
f 410 29 26 66 49 8971 153 34 72 85
g 13 8 8 75 30 17 9758 26 18 8
h 7 7 50 94 180 10 20 9454 54 31
i 238 30 45 17 8 25 10 12 9444 74
j 347 33 15 29 11 66 25 15 72 9193

TABLE I: The overall classification results on the complete
data set. The overall classification error is 6.3% while this
varies from 2.5% to 10.8% for individual gesture classes.

the number of correctly classified hand gestures enumerated
a-f (cf. Fig. 3). One row adds up to ∼10000 samples,
because this is how many were included in the set to test

the classification error of the NN. From Tab. I we obtain
an overall classification error of 6.3%. A few things can be
observed:

• overall the performance of the net seems to vary
between gestures: most notably c, e and f are the
ones on which the NN performs worst, as opposed to
gestures a and g, which are recognised best - 9503, 9758
respectively out of nearly 10000 samples recognised
correctly.

• for every gesture - but above all, for the ones recognised
worst - we can identify the one, for which it was
mistaken the most as for instance gesture b is likely
to be held for gesture c and vice versa; in other words,
’two’ is likely to be held for ’three’ and ’fist’ is likely
to be held for ’one’. This makes sense as these poses
differ only slightly in terms of pointcloud size, shape
or appearance in general. Similar observations can be
made for gesture pairs (c ↔ e), (e ↔ g) or (f ↔ a).

• it is important to note, that while one gesture may be
mistaken for another, the reverse is not always the case,
at least not in the frequency (compare f → a and a →
f)

B. Generalization to unknown persons

Table II represents the performance of the NN, trained
using all persons except one, on data from the person not
contained in the training set. Hence each row now adds up
to ∼2000 samples. The overall classification error for this
experiment is about 14% - nearly twice as large if compared
to the table before. We can also derive a set of interesting
observations here:



• the network performs best on poses f, h, i while the
worst results are on a and e

• similar to the experiment described above, there are
poses likely to be mistaken for others - here most
notably: a ↔ i and e ↔ d. While this makes sense
overall (compare the hand gestures visualised in the
database in Fig. 3 for similarities), the described cases
differ from the ones above and it is left to interpretation
where this difference comes from. If a certain hand pose
from a person differs significantly from the equivalents
included in the training set, this case is prone to error.

• we can derive, that it is obviously possible generalise
well by training a NN on our database for our given task
while the more interesting fact is that this works better
for some cases that others. It is e.g. clearly observable
that hand pose a is very likely to be interpreted as hand
pose i which can occur due to the fact that this certain
proband poses in a similar way for this specific task.

a b c d e f g h i j
a 1329 3 2 0 0 4 0 0 626 36
b 20 1710 237 11 0 3 0 4 9 6
c 7 116 1799 24 2 2 3 22 22 3
d 0 1 11 1812 145 0 1 29 0 1
e 2 0 3 349 1391 0 68 185 0 2
f 43 0 1 0 0 1900 3 0 40 13
g 1 0 2 10 251 14 1719 3 0 0
h 0 2 17 0 3 0 2 1942 27 7
i 35 6 20 2 0 1 3 22 1907 2
j 176 51 3 1 2 32 1 4 36 1674

TABLE II: The classification results on a data set with one
person excluded from the training set and entirely used for
testing. The overall classification error is about 14% while
this varies from 3% to 35% for individual gesture classes.

C. Improvement of baseline performance by thresholding
confidence

Tables III and IV refer to a set of experiments conducted
on the whole data set split into equal parts (∼100000 samples
for training and testing each) but this time comparing the
confidences to a threshold Θ, in order to classify only
those samples we deem to be ’confident enough’. As before,
several experiments have been run and we shall outline the
observations:

• we have tested various confidence parameters Θ for the
output neurons ranging between values [0.5,0.95] with
0.05 values for the steps taken; we chose to exemplary
show the effect by taking 2 sample results for the values
0.65 and 0.95

• we allow only for accepting the classified category by
the NN if the value of the highest neuron is above the
chosen confidence value, else we reject the sample. This
leads to the fact that with a higher chosen confidence
value more samples are rejected (6776 rejected samples
for Θ = 0.65 - Tab. III and 34005 rejected samples for
Θ = 0.95 - Tab. IV).

• The desired effect of sorting out cases in which we
are unsure is achieved by this parameter if we compare
these results to the previous ones (cf Tab.I) as the
number of false positives drops in all cases.

• We are able to retain most of the true positives and
improve the overall classification error which drops to
3.63%

• The disambiguation problem remains for the most diffi-
cult cases - as an example gesture f is likely to be held
for gesture a (cf. Fig. 3)

a b c d e f g h i j
a 9343 49 10 3 4 21 8 0 86 77
b 58 9286 90 57 0 15 5 6 14 12
c 117 269 8470 95 13 9 23 21 62 7
d 6 43 27 8818 104 8 63 22 2 6
e 13 8 6 112 8584 5 573 14 5 2
f 359 15 3 29 8 8607 57 14 42 34
g 9 4 4 35 20 11 9683 15 6 5
h 2 5 27 32 88 6 6 9066 39 11
i 198 11 23 10 3 10 3 4 9278 49
j 281 14 7 9 6 29 10 8 45 8880

TABLE III: The classification results with confidence thresh-
old Θ = 0.65, the overall Classification error is 3.63% -
rejected 6776 samples

When applying a very high threshold of Θ = 0.95, the
following observations can be made:

• raising Θ close to 1 results in many samples being
excluded from accepting as confident (cf. Tab. IV) as
more than a third (34005) of all samples were rejected

• in most cases the recognition of false positives drops
to (or close to) 0; those cases which are difficult to
disambiguate are reflected clearly in the results

• some classes ’suffer’ more than others in terms of
recognition or rejection rate, e.g. hand poses c and e
are subject to many exclusions which can be interpreted
in such a way as that these gestures are probably more
ambiguous than others

• we can also state the fact that as (fairly) many samples
remain as false positives in some cases (300 in the case
of gesture f → a). Confidence must be high for several
neurons (i.e. hand poses) in cases like this.

• we are able to lower the classification error to 1.3% on
average at the cost of the fact that some gestures are
better recognised than others - this can be seen in the
video of our live demonstration: we stabilise the overall
performance of the system as a whole while recognition
results fluctuate for a few examples

a b c d e f g h i j
7104 3 0 0 1 4 1 0 8 14

b 13 7655 4 1 0 2 1 0 0 1
c 112 50 4242 9 0 0 2 0 9 1
d 3 4 0 5957 5 0 8 1 0 0
e 9 0 0 12 4120 1 114 2 1 0
f 300 2 0 1 0 5843 4 0 2 7
g 8 1 0 3 0 3 8766 3 1 0
h 0 0 1 3 3 0 1 6336 7 0
i 38 0 0 1 0 0 1 0 7623 9
j 51 0 0 1 1 0 0 0 5 6633

TABLE IV: The classification results with confidence thresh-
old Θ = 0.95, the overall Classification error is 1.31% -
34005 rejected samples

D. Improvement of generalization to unknown persons

Tab. V and Tab. VI show the results of our system
when evaluating it on data of a person excluded from the
training set while employing the confidence measure. We



show exemplary results for the confidence parameters Θ =
0.75 and Θ = 0.85 (cf. Tab. V and Tab. VI respectively).
Analogous to the experiments before we derive the following
observations:

• The effect of introducing Θ when generalising on
unknown data can be described as similar albeit there
exist slight differences, namely the fact that we are
testing on a smaller number of samples which quickly
leads to a significant drop in the recognition of true
positives. Overall the system performs well offline -
though slightly worse compared to when employing the
whole database.

• we achieve error rates close to 0 (or 0) in most of the
cases with a (comparatively) small choice of Θ (cf. Tab.
V)

• a good choice of Θ is crucial for our classification task
as too many samples may be ruled out (cf. gesture g
in Tab. VI) too early which leads to poor performance
results in some cases.

• we are unable to achieve an equally good classification
error as before due to the fact that too many samples
are rejected (more than 65% in the case of Θ = 0.85)
which makes our system too unstable for some cases.
As we describe later on, we are averaging results over
time when utilising our system. Hence it remains rather
acceptable to expect some false positives - which are
then ruled out by a simple maximising function - than
to increase the confidence in such manner as that too
few samples are included. The latter case results in some
hand gestures nearly not being recognised at all.

• averaging results over time does not help if Θ is
chosen too high. We achieve best results for our Live
Demonstration with Θ ranging in [0.6,0.8]

• an overall error measurement has to be taken cautiously,
as the number of true positives varies significantly in
between the classes a-j

a b c d e f g h i j
a 429 2 0 0 0 0 0 0 333 0
b 1 1119 17 0 0 0 0 0 3 2
c 1 53 919 2 0 0 0 6 4 0
d 0 0 0 1402 8 0 0 0 0 0
e 0 0 0 261 403 0 3 33 0 0
f 1 0 0 0 0 1084 0 0 0 0
g 0 0 0 1 3 1 470 0 0 0
h 0 0 17 0 2 0 0 1727 12 2
i 0 0 0 0 0 0 0 0 1569 1
9 47 0 0 0 0 1 1 0 4 474

TABLE V: The classification results with confidence thresh-
old Θ = 0.75, the classification error is 7.89% with 9560
rejected samples

VIII. THE REAL-TIME SYSTEM

The real-time implementation is set up and described as
in section III. The proband is seated and positioned in the
same manner as the other probands during the recordings.
The right arm is placed onto the armrest in order to be able
to interact with the system properly. The lighting conditions
for this experiment were the same (bright sunlight) as those
for the other probands before. The proband tests all ten

a b c d e f g h i j
a 115 0 0 0 0 0 0 0 195 0
b 0 759 4 0 0 0 0 0 0 1
c 1 23 143 1 0 0 0 1 1 0
d 0 0 0 951 2 0 0 0 0 0
e 0 0 0 96 216 0 0 10 0 0
f 1 0 0 0 0 940 0 0 0 0
g 0 0 0 1 0 1 12 0 0 0
h 0 0 2 0 1 0 0 1507 4 1
i 0 0 0 0 0 0 0 0 1154 1
j 16 0 0 0 0 0 1 0 4 203

TABLE VI: The classification results with confidence thresh-
old Θ = 0.75, the classification error is 5.78% with 13610
rejected samples

hand poses in an arbitrary manner, the cameras record the
environment as described in Sec. III + Sec. IV and feed
the transformed data into the NN which classifies the result.
Every recognized hand pose is displayed, with the system
running at a frequency of 5-6 Hz.

Test results are in general comparable to the offline system
although an exact measurement is not possible as annotations
were not yet created for the real-time in-car scenario. Based
on a visual inspection of results, we observe very few errors
if probands’ hand gestures are a part of the training set,
otherwise performance suffers but not beyond a certain point.
The recognition rate in the latter case is impeded by the fact
that many of the chosen poses are difficult to disambiguate
(see the used gesture alphabet in Fig. 3), e.g., hand pose
’two’ vs. ’three’ or ’L’ vs. ’one’.

We were able to boost the performance of the real-time
system by using the ”confOfMax” confidence measure as in
the offline experiments. Confidence thresholds in the range of
[0.6, 0.9] yield satisfactory results, by determining whether
the system is ’sure’ enough to recognise and classify a
sample. Of course a balance has to be found between the
need to have very accurate results, and the need to maintain a
sufficiently high frequency of results. As we achieve already
a satisfactory frame rate which can conceivably be boosted
by optimizing the code, we believe that it is acceptable to
reject half of the incoming samples in exchange for a high
recognition accuracy.

IX. CONCLUSION AND OUTLOOK

In this article, we present a real-time hand gesture recog-
nition system based on inexpensive and robust time-of-
flight cameras, intended for human-machine interaction in
an automotive environment. Tests on an offline database
show excellent generalisation performance for a set of 10
static gestures. We furthermore present an in-car, real-time
implementation of this system which is tested, in a non-
rigorous way for the time being, on persons whose hands are
not at all present in the training data, while still achieving
very good performance given that a classification problem
with 10 classes is studied. In particular, what we demonstrate
is that already a computationally simple confidence measure
boosts performance considerably at the cost of ignoring
uncertain samples, which to our mind is strongly preferable
to proposing an incorrect classification.

In future work, we will build upon these foundations and
try to use more powerful heuristics to bring the recognition



rate close to 100 percent. Particularly, we intend to investi-
gate the use of other, more advanced confidence measures, as
well as the principle of temporal continuity (i.e., classifica-
tions do not usually fluctuate very rapidly). Beyond that, it is
conceivable to devise schemes that compare output neurons
not only based on their activation but also on statistical
co-occurrence properties established during training, which
might improve the disambiguation of problematic classes.
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[6] T. Kapuściński, M. Oszust, and M. Wysocki. Hand gesture recognition
using time-of-flight camera and viewpoint feature histogram. In
Intelligent Systems in Technical and Medical Diagnostics, pages 403–
414. Springer, 2014.

[7] Matthew Tang. Recognizing hand gestures with Microsoft’s
kinect. Web Site: http://www.stanford.edu/ class/ee368/Project 11/
Reports/Tang Hand Gesture Recognition. pdf, 2011.

[8] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. Effi-
cient model-based 3d tracking of hand articulations using kinect. In
BMVC, pages 1–11, 2011.

[9] Jesus Suarez and Robin R Murphy. Hand gesture recognition with
depth images: A review. In RO-MAN, 2012 IEEE, pages 411–417.
IEEE, 2012.

[10] Andreas Riener, Michael Rossbory, and Alois Ferscha. Natural dvi
based on intuitive hand gestures. In Workshop UX in Cars, Interact,
page 5, 2011.

[11] Zhou Ren, Jingjing Meng, and Junsong Yuan. Depth camera based
hand gesture recognition and its applications in human-computer-
interaction. In Information, Communications and Signal Processing
(ICICS) 2011 8th International Conference on, pages 1–5. IEEE, 2011.
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