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Abstract—In this article, we present some preliminary work
on integrating an artificial curiosity mechanism in PROPRE, a
generic and modular neural architecture, to obtain online, open-
ended and active learning of a sensory-motor space, where large
areas can be unlearnable, received from raw data flows. PROPRE
consists on the combination of the projection of the input flow,
using a self-organizing map, with the regression of the output
from this projection representation, using a linear regression.
The main feature of PROPRE is the use of a predictability
module that provides an interestingness measure for the current
input stimulus depending on a simple evaluation of the prediction
quality. This measure modulates the projection learning so that
favor the representations that predict the output better than
a local average. Especially, this leads to the learning of local
representations where an input/output relationship is defined [1].
In this article, we propose an artificial curiosity mechanism based
on the monitoring of learning progress, as proposed in [2], in
the neighborhood of each local representation. Thus, PROPRE
simultaneously learns interesting representations of the raw input
flow (depending on their capacities to predict the output) and
explores actively this input space where the learning progress
is the higher. We tested our architecture on the learning of
a direct model of an arm whose hand can only be perceived
in a restricted visual space. The modulation of the projection
learning leads to a better performance and the use of the curiosity
mechanism provides quicker learning and even improves the final
performance.

I. INTRODUCTION

Developmental robotics is a recent and active research field
that targets the conception of robots that are able to learn to
interact with an unknown environment in an autonomous and
lifelong open-ended manner, which raises a lot of challenging
and yet unsolved problems [3], [4], [5]. The constructivist
learning of predictive representations from a raw sensory-
motor data flow is one of them. Especially, this learning
does not fit with the classical machine learning framework
as large areas of the sensory-motor space are unlearnable.
Indeed motor actions do not trigger any consequences in
large areas of the perceptual space, such as trying to predict
the next solar eclipse by moving the arms. One way to
deal with learning in such high dimensional sensory-motor
spaces is to take inspiration from the infant’s development,
especially studied in developmental psychology (see [6] e.g.),
by providing to the agent an artificial curiosity mechanism.
This curiosity mechanism will motivate the agent to explore

areas of the sensory-motor space that are interesting for its own
development. Various implementations of artificial curiosity
were proposed, based on different measures, such as error
maximization [7], [8] (areas where the prediction error is the
higher are the more interesting) or similarity-based progress
maximization [9], [10] (areas where the learning progress is
the higher are the more interesting, thus avoiding to get stuck
in stochastic areas of the input space) among others (see [2]
for a review).

Especially, IAC [2] (Intelligent Adaptive Curiosity) and
its derivative R-IAC [10] (Robust IAC) propose a generic
framework for implementing a curiosity mechanism upon a
prediction learning model and was applied to the developmen-
tal robotics field. This framework consists on the monitoring
of the prediction learning progress in various local regions
paving the input space. This progress is measured in each
region by the difference of accumulated errors in two equal
and consecutive temporal windows. In R-IAC, the next input
experienced by the prediction learning model is randomly
chosen in the input space in typically 30% of times, otherwise
it is chosen randomly in one of the regions that is picked up
with a probability depending on its learning progress. When
some predefined number of experiments have been processed
in one region, it is split in two along one axis of the input
space, so that to maximize the difference between the learning
progress in the two newly created regions. For more details
on the algorithm, please refer to [10].

PROPRE, that stands for PROjection-PREdiction, is a
generic and modular framework that tackles the online learning
of raw data flow representations that are useful to predict
another data flow. It combines a generative learning module,
based on a self-organizing map (SOM), that autonomously
learns representations from the input flow, with a discrimina-
tive module that learns the correspondence between the SOM
representations and the output by mean of a linear regression.
The main originality of PROPRE consists in a predictability
module that computed an interestingness measure of the cur-
rent stimulus, based on the comparison between a prediction
quality measure and a sliding threshold. This interestingness
measure modulates the generative learning so that to favor the
learning of representations that predict the target better than
a local average. This predictability modulation mechanism

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 5th International Conference on Development and
Learning and on Epigenetic Robotics. Received March 23, 2015.



provides a better representations learning, for instance for
visual pedestrian pose classification [11]. Moreover, it leads
to the gathering of the representations where a relationship
with the output is defined, thus avoiding unlearnable areas of
the input space [1], so that PROPRE can be well suited for
the developmental robotics field.

In this article, we propose to extend the PROPRE capa-
bilities by including a curiosity mechanism in order to si-
multaneously learn and actively explore an unknown sensory-
motor space in a closed perception/action loop. The curiosity
mechanism is inspired by the one proposed in R-IAC [10].
For that purpose, each unit of the SOM, that provides a local
representation of the input flow based on prototype learning,
is associated with a learning progress measure that monitors
the model performance evolution in the corresponding Voronoi
cell in the input space. Thus, a SOM unit represents a region in
R-IAC, except that the region is here not defined by a splitting
mechanism but dynamically depends on the SOM learning,
thus providing a fixed a priori memory usage. The next
motor action performed by the system is chosen in some unit
prototype neighborhood, the unit being picked up randomly
with a probability depending on its learning progress, similarly
to what was proposed in R-IAC.

In the next section, we introduce the PROPRE architecture
including the new artificial curiosity mechanism. In section III,
we show that the curiosity mechanism leads to better asymp-
totic performance and better performance in almost every time
steps when PROPRE learns the direct model of a simple two
dimensional planar arm with a limited visual field so that large
areas in the motor space are unlearnable. We conclude and
discuss possible perspectives of our work in section IV.

II. PROPRE
A. Architecture

PROPRE is a generic and modular neural paradigm that
combines projection and prediction for online learning of
input/output relationship from raw data flows. It consists in
the interaction between three modules (see figure 1):
• A projection module (see section II-B for details) that

transforms the current input stimulus in a low di-
mensional representation. This module uses the self-
organizing map paradigm (SOM) that provides a topolog-
ical projection of the input space on the map manifold.

• A prediction module (see section II-C for details) that
learns to predict the current output target from the repre-
sentation given by the projection module. This learning
is done with a linear regression.

• A predictability module that analysis the quality of the
current prediction and plays two roles. First, it modulates
the projection module so that to learn representations
that are more efficient than a local average to predict
the target flow (see section II-D1 for details). Second,
it influences the choice of the next input of the model
so that to favor areas of the input space leading to
learning progress, thus providing an active learning of the
input/output relationship (see section II-D2 for details).
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Fig. 1. Data flow processing in PROPRE. The system learns representations
of the input data flow (D) by combining generative learning (S) and
discriminative learning of the target (T ). The predictability module, that
monitors the quality of the prediction (P ), modulates the generative learning
so that to favor representations that are better to predict of the input/output
relationship than a local average. It also chooses the next input received by
the model, depending on the learning progress, closing the perception/action
loop.

Thus, PROPRE proposes an original computation flow
in between generative and discriminative learning [11] that
is online, adaptive, active and even unsupervised when us-
ing PROPRE in a multimodal context where representations
learned from each flow try to predict the one of the other
flow [12]. Besides, depending on the way to use the SOM
activity to define the representations, the mixed projection-
prediction data flow processing can be seen as a radial basis
function network [13].

From a computational point of view, the next input stimulus
of the model is the proprioception of a motor command that
is actively determined depending on the predictability module
(equation 1.d in figure 1). The value of the target corresponds
to the perception of the environment resulting from the execu-
tion of this motor command. The input stimulus is processed
in the model by a feed-forward evaluation of each module
activity (equations 1.a-b-c). Then, the plastic connections are
updated depending on the corresponding modules activities
(equations 2.a-b) and so on.

B. Projection

In our previous articles [1], [11], the projection step con-
sisted on the classical self-organizing map model proposed
by Kohonen [14]. This model is related to the minimization
of the quantization error - plus a topological term - so that
the distribution of the prototypes tends to be similar to the
one of the input data [14], [15]. In this article, we introduce
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a curiosity mechanism to actively choose the next input (see
section II-D2 for more details), thus deeply modifying the in-
put data distribution. The coupling of this curiosity mechanism
with the Kohonen learning rule creates an undesirable dynamic
attractor corresponding to the convergence of all prototypes in
a very tiny area of the input space. Indeed, the input are chosen
around some of the learned prototypes, i.e. in a subspace of
the one mapped by the SOM, leading to the mapping of this
subspace by the SOM and so on and so forth.

In order to tackle this problem, in this article, we use a
Dynamic Self-Organizing Map (DSOM) [16] for the prediction
module. DSOM model, compared to the one of Kohonen,
includes the distance between the stimulus and the best match-
ing prototype in the computation of the learning rate and the
Gaussian neighborhood (see equation 2.a) so that the model
is only slightly changed if a prototype is already close to the
stimulus. Thus, even if the curiosity mechanism concentrates
the input in some new interesting subspace of the input space
for some time, it will have few consequences on the previously
learned projection as DSOM does not reduce a quantization
error but tends to map the input space [16]. Thus, DSOM
provides some kind of incremental learning, dealing with a
fixed number of units in the map, necessary to the use of a
curiosity mechanism [10].

In practice, S is a discrete bi-dimensional square grid
of neurons, each one receiving the input data flow D (see
figure 1). Each prototype of a unit x in the map, denoted
wSD(x, t), is updated at each time step t with the following
equation, corresponding to the one of DSOM modulated with
the interestingness measure I (t) provided by the predictability
module (see section II-D1):

∆wSD(x, t) = ηd∗(t)I(t)e
−||x−x∗(t)||22

2d∗(t)2σ2 (D(t)−wSD(x, t))
(2.a)

with η the learning rate and σ the variance of the Gaussian
neighborhood radius which are both constant to provide a
lifelong learning. || · ||2 is an euclidean distance in the
map, x∗(t) is the best matching unit defined as the unit
whose prototype is the closest to the current input D(t),
i.e. x∗(t) = arg min

x
|wSD(x, t)−D(t)|2 and d∗(t) is the

distance between this best matching unit and the current input,
i.e. d∗(t) = |wSD(x∗(t), t)−D(t)|2, with | · |2 an euclidean
distance on the input space.

The activity of any unit x of the map is defined as:

S(x, t) =

{
1 if x = x∗(t)

0 otherwise
(1.a)

This activation function, similar to the usual way to use SOM
for classification, provides a prediction that only depends on
the best matching unit (see section II-C). Thus, it is consistent
with the monitoring of the prediction quality, computed in each
Voronoi cell of DSOM units, processed in the predictability
module (see section II-D).

C. Prediction
The projection activity S(t) is used to compute a prediction

P(t) of the target data flow T(t) at time t. The activity of a
unit x in P is computed as a weighted sum of the S activity:

P (x, t) =
∑
y

wPS(x, y, t)S(y, t) (1.b)

with wPS(x, y, t) the weight from the unit y in S to the unit
x in P .

The weights of the connection between S and P are learned
with a classical stochastic gradient descent implementation of
a linear regression [17], which minimizes the mean square
error between the prediction P(t) and the current target
value T(t). Thus, the weights are updated with the following
equation:

∆wPS(x, y, t) = η′S(y, t)(T (x, t)− P (x, t)) (2.b)

with η′ the constant learning rate.

D. Predictability module
The predictability module monitors the quality Q(t) of the

current prediction P(t) with respect to the true target value
T(t) with a simple and generic measure:

Q(t) =
P (z∗, t)∑
z

P (z, t)
with z∗ = arg max

z
T (z, t)

In our experiments, the target value represents the visual
position of the end effector in a matrix of pixels, when the
hand is visible (see section III). Thus, Q(t) represents the
percentage of prediction of the right position of the hand.
This measure was also used for classification learning [11]
or multimodal regression [12].

1) Projection learning modulation: As the difficulty of the
input/output relationship learning may vary over the input
space, we compute online the average prediction quality
θ(x, t) obtained in the Voronoi cell1 of each unit x of DSOM
at time t:

θ(x, t) =

{
(1− τ)θ(x, t− 1) + τQ(t) if x = x∗(t)

θ(x, t− 1) otherwise
(1)

with τ the smoothing factor and x∗(t) the best matching unit
(see section II-B).

The interestingness measure of the current stimulus for
predicting the target, that modulates the projection learning
(equation 2.a), is defined as:

I(t) =

{
Q(t)− θ(x∗(t), t) if Q(t) >= θ(x∗(t), t)

0 otherwise
(1.c)

Thus, the current stimulus is only learned if it provides a
prediction locally more accurate than the average and the
interestingness measure depends directly on this accuracy
difference to the local average.

1In practice, as the system continuously learns, the prototype of each unit
is modified so that θ(x, t) is only a reasonable approximation of the average
prediction quality in the Voronoi cell of the unit.
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2) Artificial curiosity: As proposed in [2], [10], the artificial
curiosity mechanism is based on the monitoring of learning
progress of the model on various local areas covering the input
space, here the Voronoi cells associated with the DSOM units.
In practice, the learning progress LP(x, t) of each unit x of
the DSOM at time t is computed as the difference between
two average prediction quality computed online with different
smoothing factors τ and τ ′ (τ ′ < τ ). The learning progress
itself is averaged over time with τLP as smoothing factor:

LP(x, t) =


(1− τLP)LP(x, t− 1) + τLP(θ(x, t)− θ′(x, t))

if x = x∗(t)

LP(x, t− 1) otherwise

θ′(x, t) =

{
(1− τ ′)θ′(x, t− 1) + τ ′Q(t) if x = x∗(t)

θ′(x, t− 1) otherwise

The average prediction quality θ(x, t), computed on the short-
est time window, is the one used for the interestingness
measure (see previous section).

The next action to perform is uniformly chosen in the
input space with some probability (25% in our experiments),
otherwise it is actively determined by the curiosity mechanism.
For that purpose, the model computes for each unit x of
the DSOM a probability p(x, t), depending of its learning
progress, to be picked up :

p(x, t) =
|LP(x, t)|∑

x′

|LP(x′, t)|

Let denote x̂(t) the effectively randomly picked up unit by the
model at time t. Then, the next input D(t+1) = (D(i, t+1))i
of the model is obtained by adding to each dimension of the
prototype wSD(x̂(t), t) = (wSD(x̂(t), i, t))i, associated with
the randomly chosen unit x̂(t), a value in [−r,+r] picked up
with an uniform probability:

D(i, t+ 1) = wSD(x̂(t), i, t) + σi (1.d)

with σi ∼ U(−r, r).
It has to be noticed that the interestingness measure (sec-

tion II-D) can be interpreted as the rectified temporal evolution
of the prediction quality measure between short term (current
quality Q(t)) and medium term (θ(x, t)) averages. Thus, both
the projection modulation and the artificial curiosity are based
on the same mechanism operating at different time scales and
their intertwining leads to the emergent properties of PROPRE.

III. EXPERIMENTS AND RESULTS

A. Protocol

We tested our PROPRE architecture on the learning of the
direct model of a simulated robotic planar arm (see figure 2).
In our setup, the hand is seen by a 5×10 pixels matrix covering
a restricted part of the reachable area so that the direct model is
unlearnable for around 80% of the motor space (see figure 3).
This experiment is a simplified and adapted version of the
hand-eye-clouds experiment proposed in [10].

Fig. 2. A robot moves its arm (d1 = 3 and d2 = 2.5) in a plan depending on
an input joint motor command ((θ1, θ2) ∈ [0, π[2). It can only see its hand
with a pixel matrix providing a restricted visual field. If it sees its arm (left),
the corresponding pixel is set to 1, otherwise (right) the visual perception is
a white noise with amplitude 1.

Fig. 3. Example of visual (top) and motor (down) couples. White area
correspond to an invisible hand, whereas each colored area correspond to a
specified pixel activated in the visual matrix (better viewed in color).

With the curiosity mechanism, the next motor command
is chosen in some neighborhood of a learned prototype (see
section II-D2) so that it can be outside of the joint limits.
In this case, the motor command is bounded within the joint
limits and the input/output couple provided to PROPRE is
the proprioception and visual perception of the effectively
performed motor command.
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B. Results

In order to study the influence of the predictability module
on the performance, we tested three different architectures:
• no modulation of the projection learning (i.e. ∀t, I(t) =

1) and no curiosity, denoted DSOM+LR,
• modulation of the projection learning and no curiosity,

denoted PROPRE,
• modulation of the projection learning and curiosity, de-

noted PROPRE active.
When no curiosity mechanism is used, the motor actions
are randomly chosen in the input space with an uniform
distribution. When used, the curiosity mechanism chooses 75%
of the performed actions, the others are randomly picked up
in the motor space.

For each architecture, the DSOM size was 10 × 10, the
prediction learning rate was set to η′ = 10−3 (equation 2.b).
We independently tuned, with reasonable effort, the projection
parameters for DSOM+LR (σ = 3, η = 1) and PROPRE
(σ = 4, η = 3) (equation 2.a). Then, we tune the smoothing
factor used in the interestingness measure, τ = 10−3 (equa-
tion 1.c). These parameters, found for PROPRE, are also used
for PROPRE active is order to fairly quantify the influence
of the curiosity mechanism. Finally, we tuned the curiosity
mechanism and set the long term smoothing factor τ ′ = 10−4

and the range r = 0.35 (see section II-D2). Moreover, the
initial weights of each unit of DSOM were initialized in
[π/2− 0.5, π/2 + 0.5]2, i.e. in the center of the motor space
but outside of the motor area providing a visible hand.

In order to evaluate the performance of the models, we
defined a benchmark of 10000 motor/visual couples where the
hand is visible and recorded an error each time the maximum
of the prediction did not correspond to the real position of the
hand. The results are presented in figure 4. By the way, similar
qualitative results are obtained with the same parameters when
putting a random pixel at 1 and the others at 0, instead of white
noise, when the hand is not visible during learning.

We can clearly see that the modulation of the projection
learning provides better performance at each time step com-
pared to the DSOM+LR system. This confirms the results
we obtain in [1] but when using a Kohonen SOM module
for the projection. More interestingly, we can observe that
the curiosity mechanism, other things being equal, has also a
significant influence of the performance. Indeed, the PROPRE
active model is the one that has better performance at almost
every time step but also the better asymptotic performance.
This improvement is obtained because the curiosity mecha-
nism performs mainly motor actions providing a visible hand,
60% in average over the ten simulations, whereas only 20%
of the total motor space leads to a visible hand.

On figure 5, we illustrate an example of the temporal
evolution of the repartition of the performed motor actions
obtained when using the curiosity mechanism. We can observe
that the motor actions tend to first mainly concentrate on the
orange-red areas of figure 3 before spreading over all the motor
area leading to a visible hand. These orange-red areas are the

Fig. 4. Average and variance (over 10 simulations) of the temporal evolution
of performance obtained by the different models.

easiest ones to learn as the activation of one specific pixel can
be obtained by a larger range of motor actions (compare the
relative size of the colored areas in the motor space in figure 3).
Thus, this seems to indicate that the curiosity mechanism
leads to a developmental trajectory of the model from simple
to more complicated learning as already found when using
the IAC framework [10]. A more extensive study, including
statistical results over various trials, is necessary to confirm
this developmental trajectory in PROPRE.

Fig. 5. From top left to bottom right: temporal evolution of the distribution
of motor actions (represented in the motor space) executed by the curiosity
mechanism in one of the simulations. Figures correspond to successive 100000
time steps windows of the total simulation.

IV. CONCLUSION AND PERSPECTIVES
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PROPRE is a neural paradigm for online and open-ended
learning of input/output relationship from raw data flows.
It combines a generative learning, by projecting the input
space on a self-organizing map - here the DSOM model,
with a discriminative learning, by mean of a linear regression
of the output. The main originality of PROPRE is the use
of a predictability module that monitors the quality of the
prediction, with a simple measure, and modulates the pro-
jection learning so that to favor representations that predict
the output better than a local average. Especially, when the
input/output relationship in only defined in some areas of
the input space, this predictability modulation leads to the
gathering of representations in these learnable areas [1].

In this article, we propose to integrate in PROPRE an
artificial curiosity mechanism, derived from IAC paradigm [2],
based on the monitoring of learning progress in various regions
paving the input space. For that purpose, we compute the
temporal evolution of the prediction quality obtained in each
Voronoi cell of the DSOM by the difference between two av-
erages computed online with different smoothing factors. The
next input is randomly chosen, with an uniform distribution, in
some neighborhood of the prototype of one DSOM unit picked
up with a probability depending of its associated learning
progress. Thus, PROPRE simultaneously learns to represent
efficiently the input space, where it allows to predict the out-
put (through the generative-discriminative learning modulated
by the predictability module), and actively explores around
learned areas, where it seems the more promising (through
the curiosity mechanism monitoring the learning progress), in
a closed perception/action loop.

We tested this architecture on the learning of a direct model
of a bi-dimensional arm, whose hand position is perceived
by a matrix of pixel only covering a limited subspace of the
reachable space. The modulation of the projection learning by
the predictability module provides a better visual prediction
performance. The additional use of the curiosity mechanism
provides an even better asymptotic performance. Moreover, by
performing mainly motor commands providing a visible hand,
the curiosity mechanism reduces the number of actions needed
to obtain a defined performance.

These very promising results on a simple setup open the way
to test PROPRE for the learning and exploration of more re-
alistic sensory-motor spaces, especially high-dimensional and
redundant. Moreover, IAC was improved by two paradigms
including some features whose integration in PROPRE can
lead to interesting perspectives.
First, R-IAC (Robust IAC) [10] monitors the learning progress
at several scales by using a tree structure of regions. One way
to include this feature in PROPRE can be to use a tree of self-
organizing maps, a structure that some authors already studied
to obtain different granularities in the mapping (see [18] e.g.).
This question can be coupled with the study of the differences
between having an increasing number of fixed regions, as in
IAC and its derivatives, versus a fixed number of dynamic
regions, as in PROPRE.
Second, SAGG-RIAC (Self-Adaptive Goal Generation) [19]

monitors a competence progress, i.e. the ability to reach some
goal in the output space, instead of a learning progress, i.e.
the ability to predict the consequence of a motor action. This
competence-based curiosity seems to be particularly efficient
in highly redundant sensory-motor spaces. PROPRE can be
use for multimodal learning, by providing as output of a data
flow processing the representations learned from the other
data flow [1]. Thus, one way to integrate competence-based
curiosity in PROPRE could be to learn representations from
the sensory and the motor flows and to associate the curiosity
mechanism to the sensory representations instead of the motor
representations as in this article. Moreover, both mechanisms
could be coupled and alternatively used depending on the
sensory-motor area currently explored.
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