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Abstract. We present a study of deep learning applied to the domain
of network traffic data forecasting. This is a very important ingredient
for network traffic engineering, e.g., intelligent routing, which can opti-
mize network performance, especially in large networks. In a nutshell,
we wish to predict, in advance, the bit rate for a transmission, based on
low-dimensional connection metadata (“flows”) that is available when-
ever a communication is initiated. Our study has several genuinely new
points: First, it is performed on a large dataset (≈50 million flows),
which requires a new training scheme that operates on successive blocks
of data since the whole dataset is too large for in-memory processing.
Additionally, we are the first to propose and perform a more fine-grained
prediction that distinguishes between low, medium and high bit rates in-
stead of just “mice” and “elephant” flows. Lastly, we apply state-of-the-
art visualization and clustering techniques to flow data and show that
visualizations are insightful despite the heterogeneous and non-metric
nature of the data. We developed a processing pipeline to handle the
highly non-trivial acquisition process and allow for proper data prepro-
cessing to be able to apply DNNs to network traffic data. We conduct
DNN hyper-parameter optimization as well as feature selection experi-
ments, which clearly show that fine-grained network traffic forecasting
is feasible, and that domain-dependent data enrichment and augmenta-
tion strategies can improve results. An outlook about the fundamental
challenges presented by network traffic analysis (high data throughput,
unbalanced and dynamic classes, changing statistics, outlier detection)
concludes the article.

Keywords: DNN · Incremental Learning · Network Traffic Engineering.

1 Introduction

This article is in the context of computer network traffic forecasting. We fo-
cus on using deep neural networks (DNNs). More precisely, we investigate how
DNNs can predict, in advance, the approximate bit rate of a computer network
communication. This is modeled as a classification task with three classes (low,
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medium and high). The key idea here is to take this decision based only on
the metadata of the communication, which are represented, in their most basic
form, as a 5-tuple: source and destination IP address, source and destination
port as well as the transport protocol, e.g., TCP or UDP. An example of the
flow metadata as well as the classification task is depicted in Fig. 1.
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Fig. 1: Overview of the principal task of network traffic forecasting. Upon establishment
of an IP-based network communication between two computers, the metadata (5-tuple)
is supplied to a trained DNN that forecasts the bit rate (low, medium and high) for
this communication. This is done before any data is exchanged. In order to train the
DNN, target values have to be obtained after a communication is terminated.

The motivation for investigating this kind of classification problem stems
from the field of software-defined networking (SDN). While traditional and still
most prevalent network routing algorithms are primarily based on the destina-
tion address, SDN-like techniques enable dynamic determination of paths based
on traffic characteristics. For example, routers can typically choose between sev-
eral paths to forward network traffic to a specific destination. On the one hand,
in the case of paths with unequal costs, using only the optimal path could cause
congestion while alternative paths are underutilized. On the other hand, using
the hash of a 5-tuple to decide between multiple equal-cost paths might lead
to unequal load balancing because the amount of transmitted data cannot be
considered in advance. Also, the link cannot easily be changed during the com-
munication. Therefore, predicting the bit rate of a communication beforehand is
of high value for the routing and load balancing process.

1.1 Problem Formulation and Approach of the Article

Challenges The principal immediate challenges for machine learning in network
traffic forecasting raised and addressed in this article are as follows:

– data acquisition: Here, one encounters difficulties creating the technical in-
frastructure (i.e., administrative access to network devices, handling large
amounts of data resulting from capturing the network traffic) and the fact
that metadata contain sensitive information, requiring an anonymization
strategy that preserves information content and relations. Furthermore, the
encoding of metadata into a form that is suitable for DNNs and the gener-
ation of target values is essential.
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– regression problem: Network traffic forecasting is essentially a regression
problem as a continuous and highly variable quantity (the bit rate) needs to
be predicted, which is a challenging task that must be simplified suitably.

– class imbalance: Communications transmitting very few data are much more
frequent than those transferring huge amounts of data[3]. The distribution
regarding the bit rate as target value can be expected to change over time.

– concept drift: The statistics of the problem may be time-dependent, e.g., de-
pending on the day of week, the time of day, the season, technical changes,
etc. A DNN classifier trained on day X may therefore not be suited to classify
metadata collected on day Y 6= X. We are therefore dealing with a prob-
lem where continual re-training must be conducted while retaining previous
knowledge (see [4] for a recent review on this kind of training paradigm).

– big data setting: The amount of flows is so high, and their variability so
significant, that DNN training on a representative training set can no longer
be performed in-memory. In our scenario, the network devices we accessed
to collect data delivered 57 million records in 8 hours (about 15 GB of raw
data respectively ∅ 2 000 flows per second, including the 5-tuple).

Approach In order to address these challenges, we first of all treat DNN training
as a streaming problem by dividing all collected metadata into blocks of 100 000
flows each. Training and evaluation are then conduced in a semi-streaming fash-
ion, starting with the first block and subsequently passing to following ones, with
all relevant preprocessing operations being performed block-wise. Concept drift is
thus incorporated into DNN training although it cannot be completely compen-
sated. The class imbalance problem is currently fixed by different class balancing
mechanisms, since the whole reference dataset1 is known prior to DNN training.
This will have to be replaced by more generic solutions in the future. Lastly, we
transform the regression problem into a classification problem with three classes,
thus balancing the need for precision and complexity of the problem.

1.2 Related Work

Network traffic forecasting with machine learning techniques is a field (see [3]
for a review) that is receiving increased attention, probably due to the recent
advances in machine learning techniques, notably deep learning models. From a
machine learning point of view, many recent articles can be grouped according
to whether they conduct online or offline learning on streaming network data,
what machine learning models they employ in general, what dataset they operate
on and whether they systematically investigate the effects of data enrichment.
To the best of our knowledge, all related works operate on datasets of around
1 000 000 flows which is significantly smaller than the dataset we use in this
study, and thereby avoid “big data” issues like the necessity to perform learn-
ing in blocks. Furthermore, related works reduce the network traffic forecasting
problem to a binary classification into “mice” and “elephant” flows.

1 Our anonymized dataset is available upon request.
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In [5], the authors apply online and offline learning methods (Multi-Layer
Perceptron, Gaussian Process Regression and Online Bayesian Moment Match-
ing). The problem is treated as a two-class classification problem using three
different datasets, one self-created (not available) and the others from other au-
thors [1]. No data enrichment is performed, however information about the first
three exchanged packets is used in addition to a flow’s 5-tuple as a basis for
classification, which differs from our approach that does not consider such in-
formation. In [9], purely offline learning with two-class decision tree classifiers is
performed on the “Wide” dataset and a self-created one (not available) coming
from a data center, also without data enrichment. In [8], semi-supervised SVMs
are trained in an offline fashion to solve a two-class problem using a simple form
of data enrichment. Evaluations are conducted on a dataset of approximately
1 000 000 flows, “captured by the Broadband Communication Research Group
in UPC, Barcelona, Spain” (no reference given, no data available). [6] use offline
SVM training on two datasets captured on Chinese university campuses (no ref-
erence given, not available), and experiment extensively with feature selection
schemes, however based only on the basic 5-tuple information. Another interest-
ing albeit not directly related application of machine learning is the routing of
flows itself (see [7]).

1.3 Contribution of the Article

Overall, this study shows that fine-grained network traffic forecasting using three
classes with DNNs is feasible, and that it can be performed in a “big data” set-
ting, operating on separate data blocks sequentially. We furthermore investigate
the effects of data enrichment beyond the basic 5-tuple information, while also
dealing with anonymization and privacy issues. Lastly, we show that modern
data visualization and clustering techniques can be readily applied to network
traffic data in order to gain deeper insights into the structure of the problems
and to “debug” machine learning solutions.

2 Flow Data Pipeline

We introduce a flow data pipeline (see Fig. 2) that is responsible for collect-
ing the network traffic and producing a dataset consisting of flows describing
communications. Data collection and the first parts of the data preparation (en-
richment and anonymization) are entirely performed within our data center to
ensure privacy (supported by the administration). The codebase of the pipeline
is publicly available in our repository2.

2 https://gitlab.informatik.hs-fulda.de/flow-data-ml

https://gitlab.informatik.hs-fulda.de/flow-data-ml
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Fig. 2: Overview of the stages of the flow data pipeline: data collection, preparation
and processing. At first, flow records are collected. Before IP addresses are anonymized,
further related metadata is added during the enrichment phase. Afterwards, the fusion
of individual flow records is applied to aggregate flow entries. Flow data is normalized
and stored as a dataset that is used for DNN training in the data processing phase.

2.1 Data Collection

A flow is understood to be the history of a single transmission between two end-
points, from establishment to termination (only metadata). In particular, flows
are partly characterized by the 5-tuple. Flows may include additional metadata,
e.g., the duration or number of transferred bytes.

Flow data is collected from the networks at Fulda University of Applied Sci-
ences. We export network flow data (57 million flow records) using the NetFlow
standard from the two core network devices in our university data center dur-
ing a continuous time interval of 8 hours on a weekday (02/15/2019 9:00 AM
- 5:00 PM). These core components connect multiple subnets from data center,
laboratory, WiFi and campus networks. Collecting data from these diverse net-
works ensures realistic traffic characteristics and patterns to be used for the sub-
sequent data analysis and network flow prediction. For example, collected traffic
patterns include internal and external flows originating from client-to-server as
well as server-to-server communication.

2.2 Data Preparation

Due to the extremely large amount of collected flow records, these are partitioned
into separate blocks of 100 000 records each (representing ∅ 1 min), and the
operations given below are applied block-wise. We thus obtain the final dataset,
which is used for all experiments in this article, containing about 53 million
aggregated flow entries out of ≈57 million captured flow records.

Enrichment Based on the collected 5-tuples, additional context information is
derived. For example, groups of internal and external addresses (e.g., IP subnets,
VLANs and geographical regions) can be identified from the network addresses.
These contexts deliver additional characteristics and patterns for the subsequent
analysis and the prediction process.

Anonymization To ensure that collected metadata cannot be traced back to
individual network addresses and end users, while still keeping the syntax and
semantic of the data intact to prevent distortion of contained characteristics
for the subsequent analysis, an appropriate anonymization algorithm was de-
veloped. This mechanism anonymizes all address-related metadata, i.e., IP and
network addresses. The data center that exports the traffic metadata defines
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a password, which is cryptographically hashed and used as a seed for random-
ized permutation tables. A seed ensures consistent anonymization for further
data acquisitions. Each octet of an IP address is anonymized individually using
these tables. This way, the semantics of an address, e.g., regarding the relevance
and order of the octets forming a group of network addresses, will stay intact
after the anonymization and can still be used as a characteristic feature for pre-
diction. However, adjacency of addresses will not be preserved in favor of the
anonymization due to the seeded randomization of the permutation tables.

Aggregation Exported unidirectional flow records that potentially represent
only a part of a communication (due to exporter timeouts or cache sizes) are
aggregated to ensure coherent flow entries. The aggregation of records is based
on the 5-tuple and additional traffic characteristics, e.g., flags and predefined
time intervals. Duplicated flow records from both exporting network devices are
filtered. During this phase, the number of records is reduced to, on average, 7.5 %
of the collected flow records. Afterwards, ports greater than 32 767 are replaced
by zero because they are chosen randomly by common operating systems.

Normalization We convert raw, heterogeneous features into a format suited for
DNNs, e.g., a sequence of floating points, in three different ways: Bit patterns
are converted by promoting each bit to a 0.0 or 1.0, float values are interpolated
between 0.0 and 1.0 (min-max normalization) and categorical values are encoded
as “one-hot” vectors, i.e., a single value of 1.0 put at an unique position, having
a length of N , where N represents the number of distinct categories. An example
is given in Tab. 1.

Table 1: Exemplary normalization of an IP address, a port and a protocol value us-
ing different data formats (bit pattern or float value). Each data type has a feature-
dependent size specifying the number of individual float values that are used as input
for the DNN. For example, next to its raw format, each octet of an IP address is
represented in its original format as bit pattern or as float values.
Feature Raw format Bit pattern (size) Float value(s) (size)

IP address 81.169.238.182
0,1,0,1,0,0,0,1,1,0,1,0,1,0,0,1,
1,1,1,0,1,1,1,0,1,0,1,1,0,1,1,0 (32)

0.3176, 0.6627,
0.9333, 0.7137 (4)

Port 80 0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0 (16) 0.0012 (1)
Protocol 6 0,0,0,0,0,1,1,0 (8) 0.0235 (1)

The output of the normalization and thus of the data preparation process is
the actual dataset (2.3 GB). Next to the bit rate, there are other flow features
that can be used as class labels and hence for a prediction, e.g., the number of
transferred bytes or the duration of a flow. A combination of selected labels is
conceivable as well. The datasets structure is summarized in Tab. 2.

2.3 Data Processing

In the data processing phase a fully-connected DNN is trained to predict the
bit rate of a communication. During the processing of the created flow dataset,
three steps are performed blockwise: At first, a sub-dataset can be extracted by
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Table 2: Overview of the dataset features and labels. For each raw flow feature, the sup-
ported respectively used (gray highlighting) data formats are shown, and the number
of values is given, as well as the point in the flow data pipeline in which the information
is added (Src). Features for both source and destination are marked with �.

Feature
Data format

Src Feature
Data format

Src
Float Bit OH Float Bit OH

month 1 4 12

DC

longitude � 1 7 7

DE

day 1 5 31 latitude � 1 7 7

hour 1 5 24 country_code � 1 8 240
minute 1 6 60 vlan � 1 12 7

second 1 6 60 locality � 7 1 2
protocol 1 8 7 flags 1 8 7

address � 4 32 7

port � 1 16 7 Label Data format Src
network � 4 32 7

DE
duration 7 7 3

DAprefix_len � 1 5 7 bytes 7 7 3

asn � 1 16 7 bit_rate 7 7 3

DC = Data Collection; DE = Data Enrichment; DA = Data Aggregation; OH = One-Hot

feature selection. Afterwards, data samples are labeled based on predefined class
boundaries, which are selected to fit an almost balanced data distribution (pre-
sented in Sec. 3.1). Finally, training and testing is done on each individual block
sequentially. To evaluate different hyper-parameter setups, we do a parameter
optimization. The detailed process and related results are presented in Sec. 4.

3 Exploratory Data Analysis and Visualization

To provide a better understanding of flow data, we explore the distribution of
features used for labeling (see Sec. 3.1) and visualize the intrinsic structure of
the data (see Sec. 3.2). The analysis is performed on the first 1 000 flow entries
(including all features) that are selected from the shuffled test data of the first
block. Due to this, the same t-SNE output can be used for all context-related
taggings. No significant deviations were observed when performing this analysis
on other blocks (every 50th block was compared). All comparisons of t-SNE
outputs are done by visual inspection.

3.1 Label Distribution

We analyze the distribution of flow features that can be target values for traffic
flow prediction, i.e., the transmitted bytes, the duration or the bit rate calculated
from both. Results are shown in Fig. 3. As other authors noted previously [3],
these features deviate strongly from a uniform distribution, which makes the
determination of suitable class boundaries challenging. The principal conclusion
we draw from this is that we must use class balancing (see Sec. 4). Although the
data distribution justifies our class boundaries, their practical applicability, e.g.,
for intelligent routing, is questionable and considered as future work.
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Fig. 3: Histograms for the possible flow labels of the selected 1 000 elements in the first
block. The majority of data samples have both a very small number of transferred
bytes (a) and a short duration (b). Median values of 620 bytes respectively 0 seconds
(<1 000 ms) substantiate this fact. Hence, the bit rate values (c) are also very unevenly
spread over the entire value range (median value is 456).

3.2 Structural Context

To discover structural relations and similarities between individual flow entries
(see Figs. 4 and 5), we use t-Distributed Stochastic Neighbor Embedding (t-SNE)
[2], a state-of-the-art method, which maps high-dimensional data samples to a
low-dimensional space (2D or 3D) for visualization. We use the t-SNE implemen-
tation of the scikit-learn framework, parameter values being an iteration counter
of 500, a perplexity of 50 and a learning rate of 200.

Fig. 4a illustrates feature similarities between flow entries that have a com-
mon transport protocol. Two symmetric accumulations indicate opposite direc-
tions of the same communication. Furthermore, there are examples that do not
share the same transport protocol, but t-SNE points out similar feature data.

Tagging of each data sample according to its type of communication, which is
the combination of the source and destination locality (either private or public),
is shown in Fig. 4b. For each communication type symmetric accumulations can
be identified, whereas coherent spots map to individual flow directions.

Additionally, we apply the k-means clustering algorithm on the sub-dataset
and use the result for tagging the data samples in the t-SNE output. With
k-means, high-dimensional data samples are grouped around a predefined num-
ber of iteratively relocated cluster centers. We use the implementation of tensor-
flow (v1.12) with 10 cluster centers, whereby the initial location of each center is
determined randomly and the squared Euclidean distance is used as metric. The
tagging of the t-SNE output based on k-means clustering for the data samples is
shown in Fig. 4c. According to the t-SNE results, it can be observed that there
are samples that belong to the same cluster but have certain feature differences
and that there are samples of different clusters sharing feature properties. The
actual results depend on the chosen number of cluster centers.

We also perform an outlier detection for each k-means cluster using different
metric thresholds (average and median distance as well as both summed up with
the standard deviation). See Fig. 5a for an exemplary presentation of detected
outliers. With regard to our experiments described in the next section, the outlier
detection has no significant influence on network flow prediction.
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TCP UDP other

(a) Tagging is based on the transport protocol of each flow entry. While the
proportion of TCP is ≈39 % (389 flows, ), the one for UDP is ≈60 % (604
flows, ). There are separate spots for traffic data using either TCP or UDP.
Besides TCP and UDP data, 1 % (7 flows, ) of the traffic data is related to
other protocols like ICMP.

(b) Tagging is based on the localities of each flow entry. Four different types are
defined based on the combined locality of the source and destination system.
Both can be either private or public. About 92 % of the flows (922) describe
traffic data where a public system is involved ( , , ), while ≈8 % (78) belong
to communications between two private systems ( ). Additionally, wireless
(≈13 %, 133 flows) and wired network traffic (≈87 %, 867 flows) are separately
delineated. According to Fig. 4a and the shown locality, each part of the
symmetric spots for WiFi traffic belongs to a specific transport protocol (TCP
or UDP) and a separate communication direction.

cc0
cc1
cc2
cc3
cc4

cc5
cc6
cc7
cc8
cc9

(c) Tagging is based on the output of k-means clustering. Positions of cluster
centers (10) are visualized according to t-SNE output. Nearly uniform accumu-
lations of samples can be identified (e.g., , ), clusters are spread (e.g., , )
and mixtures of samples of different clusters (e.g., , ) are recognizable.

Fig. 4: Visualization of the selected 1 000 flow samples. All figures show the same t-SNE
results. Tagging is based on the transport protocol (a), locality (b) and clustering (c).
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normal outlier

(a) Tagging is based on an outlier detection using k-means clustering with 20
cluster centers. About 11 % of the flow entries (108) are classified as outliers.
Whereas outliers are marked with , kept data samples are shown as .

HTTP(S) DNS other

(b) Tagging is based on most frequent application protocols. Most samples be-
long to DNS communications (≈57 %, 571 flows, ). Next to HTTP(S) (≈24 %,
241 flows, ), other application protocols are visualized (≈19 %, 188 flows, ).
The latter include, for example, authentication, network monitoring and mail.

Fig. 5: Visualization of structures in the selected 1 000 samples. Tagging of the t-SNE
results is based on an outlier detection (a) and the applications protocols (b).

According to Fig. 5b DNS and HTTP(S) are the most used application pro-
tocols in the dataset. The huge proportion of DNS traffic states the rate of flow
entries with a low bit rate respectively short duration.

The data analysis emphasizes relations and feature similarities between indi-
vidual data samples. All visualizations use the same t-SNE output, but context-
related tagging, e.g., regarding used protocols or communication directions, helps
to clarify different structural patterns within network flow data.

4 Network Flow Prediction Experiments with DNNs

We employ a fully-connected DNN with L layers of identical sizes S, each hidden
layer applying a ReLU transfer function whereas the output layer applies a
softmax function. The batch size bs= 100 and the number of training epochs
E = 10 are fixed for all experiments. DNN training minimizes a standard cross-
entropy loss by stochastic gradient descent by means of the Adam Optimizer.
The last 10 % of the chronologically ordered data are completely used for testing
every 50th iteration.
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Choice of evaluation metrics Since we are dealing with a three-class prob-
lem, the usual metrics for binary problems are not applicable, such as F1 score,
precision, recall, etc. Instead, we present results in the more general form of
a confusion matrix, from which we can derive classification accuracy by con-
sidering only the diagonal elements. Both of these measures are applicable for
classification tasks with an arbitrary number of classes, which can be useful for
comparison should we decide to introduce more classes at a later point. In order
to allow a more in-depth comparison between the experimental conditions (using
the 5-tuple information –vs– using all features), we decided to additionally com-
pute the standard binary performance metrics separately for each of the three
classes.
Hyper-parameters Tunable parameters include the learning rate ε and the
optional application of dropout to input di and hidden layers dh, with different
dropout probabilities. The assignment of labels is done based on a class boundary
parameter C. This list of boundary values is consistently used for all blocks before
a training phase. In order to specify the class balancing method, the parameter
W is introduced. Balancing for training and test data is achieved either by
standard class weighting or under-sampling. Furthermore, a feature selector F
provides support for the construction of sub-datasets. Oc specifies the number
of cluster centers that are used for outlier detection using k-means clustering.
All hyper-parameters mentioned here (L, S, ε, di, dh, C, W, F, Oc) are varied
to perform a joint parameter optimization.

We train all DNN classifiers on the first 10 blocks sequentially and evaluate
the achieved prediction accuracy on each block’s test set. In order to obtain the
best possible results, we conduct a combinatorial hyper-parameter optimization,
leading to a total of 5 400 DNN training and evaluation runs. The explored
parameter ranges are summarized in Tab. 3. Depending on the hardware, the
computation time of one experiment is between 8 and 15 minutes. Based on the
complexity of the DNN and the chosen parameters, the GPU memory usage is
between 140 and 264 MB and the RAM utilization varies from 762 to 1 200 MB.

Labeling Because of the unbalanced data distribution (see Sec. 3.1) that makes
regression problematic (also addressed in [5]), we treat network flow prediction
as a classification problem, using the three exemplary classes “low”, “medium”

Table 3: Overview of the variables and tested values for parameter optimization.
Parameter Variable Values
Dropout (input, hidden) (di, dh) {(1.0, 1.0), (0.9, 0.6), (0.8, 0.5)}
Layers L {3, 4, 5}
Neurons per layer S {200, 400, 600, 800, 1 000}
Learning Rate ε {0.01, 0.001, 0.0001}
Features F {5-tuple, all}

Class boundaries (bit rate) C {{0, 500, 5 000,∞},
{0, 50, 8 000,∞}}

Class balancing method W {0 (under-sampling),
1 (class weighting)}

Cluster centers (outlier detection) Oc {0, 20, 60, 100, 500}



12 B. Pfülb et al.

and “high”. The calculated bit rate of each flow is used for computing a class
based on thresholding operation (with the two thresholds adapted such that the
distribution of classes is approximately flat). Next to the used set of boundaries
for class division, Tab. 4 presents related characteristics for each class.

Table 4: Exemplary class partitioning for the prediction of a flow’s bit rate. Next to the
related intervals, the median and mean value, the average number of elements using
class balancing (class weighting or under-sampling) and the data distribution within
each class for the first 10 blocks of the dataset are shown (log scale).

Class Interval Median/
Average elements

Data
Mean

class
weighting

under-
sampling

distribution

0 [0, 50)
0/
2

21 945

1 [50, 8 000)
3 904/
4 004

28 228 21 909

2 [8 000,∞]
16 960/

131 736
24 459

Fig. 6 depicts the distribution of the true labels within the t-SNE output.
Whereas some spots primarily have data samples belonging to the same class
(c0), other spots are a mixture of different (c1, c2) or all classes. With regard to
Fig. 4c, the results of k-means clustering cannot be used to classify the samples
adequately. Respectively, it is not sufficient to predict the bit rate of a flow.

c0 c1 c2

Fig. 6: Visualization of the t-SNE results based on the true labels for the selected 1 000
samples. Tagging is based on the three class labels ((c0 ≈65 %, 652 flows, ), (c1 ≈12 %,
120 flows, ), (c2 ≈23 %, 228 flows, )), whereby the exemplary boundaries are used.

The two experiments with the highest accuracy, determined by the parameter
optimization, are shown in Fig. 7 and Tab. 5. In the first experiment, training
is done on all available flow features (247 inputs), whereas in the second one
only the 5-tuple (104 inputs) is used. Fig. 7 depicts the trend of the prediction
accuracy. At the beginning of a directly following block, the accuracy value can
considerably vary compared to the rate for the previous block but generally sta-
bilizes for each block after a few training iterations. This indicates a slight change
in statistics (concept drift) between the individual blocks, which becomes clearer
in Fig. 9. We achieve a maximum accuracy of ≈87 % for the first respectively
≈85 % for the second experiment. Regarding these maxima, the data enrichment
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leads to an accuracy increase of about 2 %. Confusion matrices for both experi-
ments are also outlined in Fig. 7. The distinction between class 1 and 2 is more
challenging. Fig. 8 gives an overview of the false classified data samples. With
regard to the false labels, prediction errors for coherent spots mainly belong to
the same class.
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Fig. 7: Testing results for the best experiments determined by the parameter optimiza-
tion: first (F= all, blue, ) and second experiment (F= 5-tuple, orange, ). The trend
of the accuracy for the first 10 blocks is depicted. Training and testing is done sequen-
tially on each independent block for 10 epochs. Besides this, the confusion matrices
for the last iteration of block 0 in the first (top, blue) and second experiment (bot-
tom, orange) are shown. Hyper-parameters F= all: C= [0, 50, 8 000], (di,dh) = (1.0,1.0),
L= 3, S= 1000, ε= 0.0001, W = 1, Ck = 0; parameters F= 5-tuple: C= [0, 50, 8 000],
(di,dh) = (0.9,0.6), L= 5, S= 1000, ε= 0.001, W = 0, Ck = 0.

Table 5: Common binary classification measures, given separately for each of the three
classes in a one-against-all setting. These measures are instructive, particularly when
comparing performance between the two experiments (5-tuple only against the full set
of features). The values can be computed from the confusion matrices shown in Fig. 7.

exp. precision recall/sensitivity specificity accuracy
5-tuple class 0 98 84.5 97.3 89.5
5-tuple class 1 43.1 69.8 88.9 86.9
5-tuple class 2 65.8 69.7 85.6 81.0
all feat. class 0 95.4 88 93.5 90.2
all feat. class 1 53.2 65.5 93.1 90.1
all feat. class 2 70.9 76.5 87.5 84.4

5 Discussion and Principal Conclusions

The principal conclusions we can draw from the presented experiments are: First
of all, DNNs are a feasible tool for performing fine-grained network traffic flow
prediction in a “big data” setting, achieving an accuracy of roughly 87 % even
though performed in a streaming fashion on successive and independent blocks
of flow data. Previous studies reached accuracies over 90 % but grouped network
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Fig. 8: Visualization of the t-SNE results based on the predicted labels for the
selected 1 000 flow samples. Correct classified samples are marked with (cor-
rect≈78 %, 778 flows). For all false classified samples ((c0 wrong≈12 %, 120 flows, ),
(c1 wrong≈3 %, 33 flows, ) and (c2 wrong≈7 %, 69 flows, )) the true label is shown.
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Fig. 9: Overview of the accuracy for different blocks of the dataset. A DNN is trained
and tested for 20 epochs on the first block using all available flow features (blue line).
Subsequently, only the accuracy is determined for each fiftieth block while measuring
on test data for one epoch (red lines). Parameter setup: see first experiment in Fig. 7.
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flows in only two classes (“mice” and “elephant” flows), which is considerably
less useful for fine-grained network traffic engineering, and, above all, processed
all training data in a single block. Secondly, we find that data enrichment can be
useful, as it improves classification accuracy by roughly 2 % at manageable com-
putational cost. Thirdly, our visualization and clustering studies show that there
is no simple way to improve results by outlier detection, presumably because the
data samples do not lend themselves to clustering using Euclidean distance, and
a custom distance metric would have to be used here. We establish nevertheless
that t-SNE is a useful tool to visualize structures and relations in network flow
data. Lastly, we confirm by experiments that there is moderate to strong concept
drift in flow data, and that appropriate measures will have to be taken in future
works to address this issue.
Comparability and Validity of Results We may ask how generalizable our
results are, and the answer is of course complex. In a university campus scenario
such as ours, there are numerous factors that may affect the results, like the day
of week, the season, the proximity of tests, etc. For example, the WiFi network
– including thousands of connected students – represents a dynamic setup that
probably cannot be solved easily for a DNN because connections are unique and
non-recurring (in contrast to, e.g., communications between servers). Identifying
and excluding such “difficult” flows could conceivably improve prediction accu-
racy and generalizability of our results. As stated in Sec. 1.2, publicly available
datasets are relatively small. Larger datasets are not accessible, probably due to
privacy issues. Even though our campus network is unique in its structure and
thus results on our data do not in any way guarantee that the approach will
work in other networks, the same can be said for any of the previous studies
on the subject. The only way to show generality would be to have access to
several datasets of network flows of comparable size, and to perform the same
experiments on all of them. Comparing our results to other studies on the sub-
ject is further complicated by the fact that we perform three-class classification
whereas previous studies were concerned with two-class scenarios only.
Discussion of the three-class scenario To show that our architecture can
replicate previous results, we trained our DNNs on a two-class task with a thresh-
old value of 500 bits per second between “mice” and “elephant” flows and obtain
a test accuracy of over 90 %, which is comparable to the results of other studies
while taking the abovementioned caveats into consideration. Obviously, intro-
ducing an additional class degrades the classification accuracy, simply because
guessing has a lower chance of success with one more class to choose from.
Whether this lower prediction accuracy is compensated by the benefit of a more
fine-grained prediction would have to be tested in simulation, which is what we
are currently working on. For this study, we wished to establish that more than
two classes can be successfully integrated into a prediction scheme, all the more
since the computational cost of predicting more classes is negligible at inference
time. When also considering that we perform learning in a streaming setting,
which in general degrades performance w.r.t. settings where all data are simulta-
neously available for training, our results must be considered very competitive.
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Justification of using DNNs The principal reason for using DNNs as opposed
to other methods proposed in the literature, e.g., Gaussian Process Regression
(GPR) [5], is the fact that in future we want to train our classifiers in a streaming
fashion: As soon as a new data block has been collected, model re-training is
conducted automatically, and the trained model is immediately deployed and
used for flow classification. This puts a strong focus on the scalability of the
training process w.r.t. the number of data samples. In [5], a training complexity
of O(n ·m2) is reported for GPR, where concrete values for m, or how they are
chosen, are unclear. Naively, GPR has a training complexity of O(n3), and it is
unclear whether the optimizations discussed in [5] can be tuned without human
intervention (no code is provided). In contrast, DNNs have a natural training
complexity of O(n) without any optimizations, so they do seem a more natural
choice in the “big data” context. We will investigate the performance of other
learning algorithms in future work, and compare them to our approach.
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