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Abstract—In this contribution, we propose to use road
and lane information as contextual cues in order to increase
the precision of multi-object object tracking. For tracking,
we employ a Monte Carlo implementation of a Probability
Hypothesis Density (PHD)-filter, whereas scene context (road
and lane information) is taken from annotated street maps.
The novel aspect of the presented work is the tightly coupling
of context information and the particle filtering process. This
is achieved by injecting a priori particles representing locally
expected motions, which are in turn determined by the local
road and the lane configuration.

This approach is evaluated on objects (tracklets) from the
public KITTI benchmark database. Our experimental findings
demonstrate a considerable tracking precision increasing when
including this kind of a priori knowledge. At the same time,
the approach is able to determine objects whose movements
differ from the locally expected motion, which is an important
feature for safety applications.
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Filter, Particle filter, Vector field, Intelligent vehicle, Road context

I. INTRODUCTION

After more than 30 years of contributions on Multiple
Target Tracking (MTT), this subject still remains open
since, depending on the applications, it addresses complex
problems such as management of multiple hypotheses, data
association between multiple information sources, and real
time constraints. In the context of Intelligent Vehicles (IV),
MTT is a key perception process attempting to determine the
(e.g. kinematic) state of observed objects. This information
is not only important for active safety applications, such as
Advanced Driver Assistance Systems (ADAS), but also for
scene understanding in autonomous vehicles.

I-A. Related work

Classic MTT approaches are defined by a recursive
framework where a set of detected objects is managed by
means of temporal filtering such as Kalman or particle
filters. Filtering can usually cope with detection errors and
simple missed detections. Multiple Hypothesis Tracking
(MHT, [14]), and Joint Probability Data Association Filter-
ing (JPDAF, [1], [7], are part of well-known mechanisms
improving the performance of tracking for complex object-
to-track association cases in the presence of missed and false
detections.

The PHD filter algorithm is efficient in terms of com-
putational resources and propagates the first-order moments
of multi-object statistics [10], [17], [12], [19], [18]. PHD
is capable to filter clutter, missing observations along with
noisy ones using the full Bayesian basis, just like MTT,
but with linear complexity depending the number of tracked
objects.

Recently, efficient particle implementations of PHD fil-
tering have been proposed [18], [10], [12]. These approaches
include the estimation of the number of observed tracks. To
this end, particle clustering is necessary to identify tracks.
However, such a procedure is non-trivial in urban scenarios
where objects move in close proximity to each other. In our
variant of the particle-based PHD-filter, we avoid the prob-
lems of clustering and cardinality estimation by initializing
tracks with a fixed number of particles constantly attached
to them. The method used by us is not claiming to perform
superior multi-object tracking, however, it does facilitate the
integration of contextual information, as particles are easy
to affect by context information.

Temporal filtering contained in MTT frameworks ex-
ploits motion models and observed measurements for max-
imizing the probability of the observed motion. Interactive
motion models take advantage of multiple expected high-
level motion classes, such as lane changes or turns or stops
at crossroads in application to IV contexts [6], [3]. Those
models use online information about recent vehicle motions
to predict their future positions. In our case, no motion
model classes have been defined, but low-level primitives
have been integrated in the form of expected velocity vector
fields. Such vector fields are defined by road and lane
context, which is in turn taken from maps using ego-
localization information.

I-B. Contribution

Most of the state-of-the-art methods, which exploit con-
text information, are strongly correlated to a particular
detection method. For instance, road detection approaches
[15], [2], [16], [5], are used to provide key information
for driving assistance applications or to define regions of
interest for object tracking [2], [11]. In contrast, this study
is inspired by [9], [8], [13], [11] and aims to use extracted
context (road) information to directly improve the quality
of multi-object tracking. Our contribution in this article is a
computational mechanism for integrating a priori knowledge



Figure 1: Example of a simulated multi-target tracking
scene. Green rectangles are tracks, red circles are detections,
dots are particles

derived from contextual road and lane information into a
state-of-the-art multi-object tracking system. The benefits of
this approach are evaluated in terms of track continuity and
track overlapping.

II. PROPOSED METHODS

Our goal is to track vehicles, pedestrians and other possi-
ble objects in two-dimensional space (top-view) while taking
scene context into account. Two use cases are considered:
simulated scenarios on a featureless 2D map plane with
hand-crafted velocity vector field as illustrated in Fig. 1,
and a 2D East-North map space as shown in Fig. 2 taken
from the KITTI-database, from which we obtain object
information and GPS coordinates for the extraction of road
and lane context via OpenStreetMap.

II-A. PHD-filter-based tracker

The PHD filter is represented by Nx dynamically chang-
ing tracks xk, k = 1, Nx. Each track x contains Np

particles. Particle ξxk,n, n = 1, Np contain a set of vectors
{[ci, di, vi]T }, i = 1, D, where D is dimension of the state
space, ci is the center coordinate, di is the detection scale
and vi is the speed. A weight ωxk,n, n = 1, Np is assigned to
each particle ξxk,n, n = 1, Np. The parameters of the PHD
filter are: death probability Pd, birth probability Pb, false
negative probability Pfn and a vector of resampling and
association parameters σi, i = 1, D. The tracking process
is composed of the following stages: prediction, association,
observation, resampling, merging and correction.

1) Prediction : Tracks and theirs particles are propagated
according to the motion model:

ci,t|t−1 =ci,t−1 + vi,t−1 (1)

di,t|t−1 = di,t−1, i = 1, D (2)
vi,t|t−1 = vi,t−1 (3)

where t is a timestamp and t− 1 is a previous timestamp.

2) Association : Input observations zj , where j = 1, Nz

and Nz is a number of observations, are assigned to existing
tracks xk, k = 1, Nx. Tracks assigned to observations
increase their associated probability by Pd:

Pk,t = max(Pk,t−1 + Pd, 1), k = 1, Nx (4)

Non-associated tracks update their probability by:

Pk,t = max(Pk,t−1 − Pd, 0) (5)

Observations which are not associated create new tracks with
a probability:

Pk,t = Pb (6)

In case a new track is created, the weights of its particles
are:

ωxk,n = Pk,t/N
p, n = 1, Np (7)

In detail, we proceed as follows:
– For all pairs {zj , xk}, j = 1, Nz; k = 1, Nx the

distance G(xk,t, zj,t) is calculated, where the distance
function is a product of Gaussians:

G(xk,t, zj,t) = N (cxk,i − czj ,i|0,Kcσi) (8)
×N (dxk,i − dzj ,i|0,Kdσi)

×N (vxk,i − vzj ,i|0,Kvσi)

where Kc,Kd,Kv are coefficients in the range (0, 1],
chosen empirically.

– Calculate an association threshold θa, as a distance:

θa = G(xk,t, x̂k,t) (9)

where:

cx̂k,i = cxk,i +Kcσi (10)
dx̂k,i = dxk,i +Kdσi (11)
vx̂k,i = vxk,i +Kvσi (12)

– Find the nearest pair

(x, z) = arg max
xk∈X,zj∈Z

G(xk, zj) (13)

Associate these x and z, remove x from list of pairs
to associate and repeat this step if:

G(x, z) > θa (14)

– Finally, a list of associated pairs {zj , xk}, a list of non-
associated detections {zj} and a list of non-associated
tracks {xk} are obtained.

3) Observation : For each new observation zj,t, j =
1, Nz , and for each particle ξxk , xk ∈ X a distance
is calculated: G(ξxk , zj,t). The distances are normalized
relative to observations:

ωxk,n =
∑
j

G(ξxk , zj)∑
lG(ξxl , zj)

+ ωxk,n × Pfn (15)

The last term represents the ”old” particle weights in order
to stabilize fluctuations.



4) Resampling : Track xk is deleted if

Pk < θd (16)

Where θd is an imposed parameter. Otherwise, its particles
are resampled using random fluctuations:

ci,t = ci,t|t−1 + ζc(0, K̂cσi) (17)

di,t = di,t|t−1 + ζd(0, K̂dσi) (18)

vi,t = vi,t|t−1 + ζv(0, K̂vσi) (19)

Here ζc, ζd, ζv are different white noises, and K̂c, K̂d, K̂v

are coefficients, chosen empirically.

The special multiplier K̂ increases parameters
K̂c, K̂d, K̂v if track’s probability is lower than one
(this is done in order to make particles more dispersed
when a track is ”lost”, making it easier to ”pick up” the
track later).

5) Merging: If two tracks xk1 and xk2 have a distance:

G(xk1, xk2) > θm (20)

they are supposed to belong to a single object, and the newer
track is deleted. Here θm is a predefined merging threshold.

6) Correction: New track centers are calculated as the
weighted mean of particles associated to that track:

xk,t =
1

Np

∑
n=1,Np

ξxk,n,t (21)

The output of the algorithm is represented as a set of tracks.

II-B. Vector field implementation

The context information to implement in the tracking
system is represented as a vector field, that is, a field of
probable directions for each map location. If Π is the state
space of tracking having dimension D, and a subspace T ⊂
Π is a space where vector fields are defined, then one point
τ ∈ T contains a set of Nτ vectors V in it. One vector
v ∈ V has components vi, i = 1, D.

1) Orientation and norm influence: A track’s coordinates
ci, i = 1, D indicate a point of the tracking space π ∈ Π.
At the resampling and association stages, when random
fluctuations at point π ∈ T are needed, the vector field is
applied. The N × (1 − CMF ) first particles are resampled
as in eqns.(17,18,19), and other particles are resampled
according to vectors, defined in π in eqns.(22,23,24). Here
CMF is a coefficient of ”model force”. Particle resampling
is performed as follows:

ci,t = ci,t|t−1 + ζc (22)
di,t = di,t|t−1 + ζd (23)
vi,t = vπj ,i + ζv (24)

where vπj is a vector defined at the point π, with components
vπj ,i, i = 1, D . All N × CMF field-defined particles are
divided between vectors vπj , j = 1, Nπ uniformly. Here Nπ

is a number of vectors defined in π.

Figure 3: An example of a simulated scenario. The color of
particles shows their weight and thus their current impact.
The red particles have more weight than blue ones. Green
rectangles indicate current tracks.

2) Direction-only influence: Another potential way to
incorporate context consists in letting only the orientation
of the vector field influence tracking. In this case, one can
calculate new vector components as follows:

v̂πj ,i =
vπj ,i ×

∥∥vt|t−1∥∥∥∥vπj∥∥ (25)

Here
∥∥vt|t−1∥∥ is the norm of the track’s speed and

∥∥vπj∥∥ is
the norm of the vector field’s speed at πj . So, we fuse the
field’s orientation with the norm of the current track’s speed.
A visual representation of the vector field for the road map
is illustrated in Fig. 2

Especially the second point is important as it eliminates
the need to use vector fields containing all possible speeds
(vector lengths).

II-C. Vector field compatibility measurement

When the field of possible directions is imposed, it is
clear that a moving object may not at all follow these
directions. In such a case, it may be assumed that the object
has atypical behavior and is therefore potentially dangerous.
The detection of such objects is possible with the proposed
framework. If the motion of a tracked object satisfies the
condition (26) for at least one j, it can be classified as
typical. The condition considers motion as being ”typical”
if field-sampled particles are closer to new detections than
the mean of all particles. Fig. 3 shows a visual distribution
of particles’ weights.∑

n∈N̂πj ωxk,n∑
n∈N̂p ωxk,n

× Np

CMF /Nπj
> 1 (26)

Here, N̂ and N̂πj are the sets of indexes for all particles
of object and particles, resampled according to vector j of
point π respectively.



(a) Map with areas covering by vector fields (b) Field’s vector directions (c) Field’s vector directions, zoom-in

Figure 2: Visual representation of vector fields on a OpenStreetMap (OSM) map

II-D. Evaluation method

Two major evaluation methods are used to quantify
the accuracy of our approach: an overlap measure and a
continuity measure. The first method measures the accuracy
of a track’s position with respect to associated real object
position. The ”continuity” measure computes the quality
object-to-track associations. Track overlap is calculated as
the mean of all association overlaps (i.e. overlap between
track and real object):

Overlap =
1

Nassoc

∑
(k,i)

max(
S(xk ∩ yi)
S(xk)

,
S(xk ∩ yi)
S(yi)

) (27)

where Nassoc is a number of associations in XZassoc and
S(·) is an area occupied by detection. The overlap value is
always ∈ [0, 1], where 1 represents the ideal case of full
overlap.

The ”continuity” measure is calculated according to the
formula:

Continuity =
1

NY

∑
yi∈Y

max
k

1

Nyi

∑
t

δk,i(t) (28)

where NY is a number of ground-truth objects, Nyi is the
number of appearances of the object yi during the whole
tracking scenario, δk,i(t) = 1 if (k, i) ∈ XZassoc(t) and
δk,i(t) = 0 otherwise. The continuity measure thus describes
the mean of the longest associations. It varies in (0, 1], where
1 is the ideal case of constant associations.

III. EXPERIMENTS

The approach was tested on simulated data and on the
public KITTI benchmark dataset[4] using annotated tracklets
as ground-truth. The common schema to evaluate results
requires four sets of data:

1. The set of labeled rectangles representing tracks
constructed by our algorithms: X .

2. The set of labeled rectangles representing real
objects Y , or ground-truth.

3. The set of labeled rectangles representing noisy
objects Z. It is obtained from ground-truth by
artificially introducing missed (false negative) de-
tections, and by corrupting retained detections by
noise. Noise is modeled as an additional Gaussian
fluctuation applied to positions and sizes (ci, di),
i = 1, D of all ground-truth objects. Each noisy
detection z ∈ Z has a ground-truth pair y ∈ Y .

4. The set of pairs of labels representing associations
between noisy detections and tracks XZassoc

As the particle implementation of PHD-filtering contains
a pseudo-random process, small variations can occur over
trials. To precisely calculate the evaluation measures, the
results were calculated as the mean and the variation of both
measures across 15 trials.

III-A. Simulation

The first simulation scenario represents a scene of size
1000 × 1000 pixels and of 110 frames, with 10 objects
moving simultaneously: four from left to right, six from up
to down as shown in Fig. 4a. This scenario is chosen since
it contains many pairwise intersections, in order to observe
the algorithm’s capability to resolve collisions. All of objects
have sizes of 30× 60 pixels.

Noise parameters were set as follows:

1. σd = 10 - the variance of white noise applied to
particle dimensions

2. σc = 30 - the variance of white noise applied to
particle centers

3. False negative rate Pfn = 0.1
4. False positive rate Pfp = 0.2

PHD imposed parameters are:



(a) (b)

(c)

Figure 4: Visual representation of the vector field (c) and
simulated scenarios (a,b). Green rectangles and traces are
tracks and their previous positions

1. Pb = 0.7
2. Pd = 0.1
3. Pfn = 0.1

The vector field map was created manually and covers all
of the scene uniformly with two directions present: ”right”
and ”down” as shown at Fig. 4c.

Estimations of overlap and continuity are shown at
Fig. 5. A larger improvement of evaluation measures is
observed for the overlap, i.e., position estimation, and a
lower one for time continuity. However both measures are
consistently improved by the introduction of the vector field.

Errors of associations can happen mostly in case of
intersections. If two tracks meet at one point, they lose
parts of their particle information which can help to resolve
the collision because vector fields are identical and come
from the same point position. But, on the other hand, if two
differently oriented tracks meet in one point, the vector field
at this point helps them to go through it faster. These two
reasons balance themselves and so the impact of the vector
field is low.

The overlap errors arise from imprecise positions of
associations. When the position noise is Gaussian, the trajec-
tories of tracks try to oscillate. When applying vector fields,
this stabilizes positions and thus brings them closer to their
mean, i.e. to real state.

For the same simulated scenario, vector field compati-
bility measures were calculated according to Sec. II-C. We

(a) Overlap (b) Continuity

Figure 5: Accuracy for simulated data when only vector
directions are used, plotted as a function of total particle
number. Solid lines are mean values, semi-transparent bor-
ders represent their variances

Figure 6: Direction compatibility measurements for simu-
lated data. The values are calculated according to eqn. (26).
For values bigger than 1.0, we assume movement along the
field, and against the field otherwise.

measured their mean and standard deviation, both for ”com-
patible” and ”incompatible” tracks, with the expectation
that the compatibility measure allows to distinguish those
cases. The compatible tracks were evaluated in the scenario
described above, the incompatible ones in a scenario with an
inverted vector field but which was otherwise identical. The
results are shown in Fig. 6. The difference in mean values
is evident, but noise deviations are considerable.

The second simulation scenario represents a scene of size
1000 × 1000 pixels and of 200 frames, with 8 objects si-
multaneously: four compatible and four incompatible as it is
shown at Fig. 4b. All of objects have sizes of 15×15 pixels.
Noise parameters were set as follows: σd = 10, σc = 20,
Pfn = 0.2, Pfp = 0.125. PHD imposed parameters are:
Pb = 0.7, Pd = 0.1, Pfn = 0.5. This scenario is used to
test auto-determined model force mechanism.

III-B. Real data

The tracking space is a 2D East-North plane limited
of size 165 × 167 meters shown in Fig. 2. The duration
of tracking is 12 seconds with a frequency of 8.9 fps. A
number of 19 targets takes part in this urban traffic scenario.
Since objects like cars, buses, pedestrians and cyclists are
present without class distinction, detections of pedestrians
can be mixed with detections of cars and other objects.



(a) Overlap (b) Continuity

Figure 7: Accuracy for real data for both vector directions
and norms used in dependency of used particles number

(a) Overlap (b) Continuity

Figure 8: Accuracy for real data for only vector directions
used in dependency of used particles number

Noise parameters were set to: σd = 0, σc = 0.5 meters,
Pfn = 0.1, Pfp = 0. PHD imposed parameters are: Pb =
0.7, Pd = 0.1, Pfn = 0.1.

The vector field map was created manually based on
OpenStreetMap and KITTI Velodyne and GPS-data and
covers all tracklets’ possible occupation areas with directions
collateral to expected target motions in those areas. The map
of directions is displayed in Figs. 2b,2c

Estimations of overlap and continuity in cases of full
information are shown at Figs. 7,8. As in case of simulated
data, the overlap shows a greater performance difference
as a consequence of the vector field. The variance of
performance is smaller because of less noise occurring in
the real scenario.

From the comparison of the two cases: direction+norm vs
direction only, and from the comparison of margins between
baseline and vector field-affected performance, it is possible
to draw the conclusion that in real road traffic the value
of speed is a helpful information, but that one can still
obtain significant gains in tracking quality when using only
directions.

III-C. Auto-determined model force

The second simulated scenario mentioned in Sec. III-A
was created to compare the impact on tracking precision

(a) Overlap (b) Continuity

Figure 9: Comparison of accuracy for tracks moving along
and against vector fields without and with them using fixed
model force coefficient

(a) Overlap (b) Continuity

Figure 10: Comparison of accuracy for tracks moving along
and against vector fields without and with them using a
variable model force coefficient

in the case of movements along vector fields to the case
of movements against it. As expected, the results obtained
during this experiment show a decreased tracking perfor-
mance when tracks are incompatible with the context fields.
In Fig. 9, four lines are shown where blue and red are
the respective baselines for compatible and incompatible
tracks without the influence of vector fields. Yellow and
green curves represent compatible and incompatible tracks
assisted by context with a fixed model force coefficient,
CMF = 0.05. As illustrated, the overlap observed for incom-
patible tracks is the almost the same as the improvement for
compatible ones. Track continuity seems not be influenced
in both cases.

Hereafter, we addressed the question of how to keep
the advantages of contextual information while reducing the
undesirable effects on incompatible tracks. To this end, a
dynamic estimation of the model force coefficient, CMF ,
is proposed. If the track is considered as compatible with
respect to the vector field, see eqn. (26), CMF is increased
by 0.01 or decreased otherwise. For all tracks,CMF varies
from 0.01 to 0.5. The results are shown in Fig. 10

The overlap improvement for compatible tracks clearly
outweighs the slight performance decrease observed for
incompatible ones. However, track continuity decreases par-



ticularly for compatible tracks. This result can be explained
in ambiguous tracking situations (e.g. two tracks intersect-
ing) where contextual information can induce object-to-
track association errors. Simulated scenarios contain objects
intersecting at the same location with different speed direc-
tions. This use case is however not encountered under real
conditions.

IV. DISCUSSION

We presented a principled method to introduce prior
knowledge into tracking, in this case information about
expected object speeds obtained from scene context. We
showed, both in a simulated and a real scenario from the
KITTI database, that the quality of tracking (measured
by standard measures) is significantly improved, leading
to a more robust trajectory and motion estimation by a
tracking algorithm. Although different tracking algorithms
will implement this differently, the proposed vector field
approach can be transferred to all particle-based tracking
models and thus has a rather wide range of applicability.

Please note that, in this article, we have not addressed the
subject of object detection: object information, or ground-
truth, is available in both the simulated and the real scenario
that we consider, and we corrupt it artificially by noise in
order to show the benefits of our approach. Particularly when
detections are obtained, as it is envisioned, from a real object
detection system, our approach will be beneficial because
the motion priors may conceivably lead to a better position
estimation than it would be possible from noisy detections
alone.

The Gaussian noise applied to simulate the detection
jitter is not very realistic, and results may be slightly worse
for a less convenient noise model. However it is simple to
implement, and gives a good guess of performance under
noise.

V. CONCLUSION

In this paper, we presented a proof-of-concept of a novel
method for multiple target tracking for Intelligent Vehicles.
This method uses road information in order to provide con-
textual cues which lead to an increased precision in multi-
object tracking, suing a PHD filter approach in it’s particle
implementation. The public KITTI benchmark database was
used to verify the impact on tracking precision, providing
that such kind of a priori knowledge is considerably helpful
when there is no single a priori direction but a distribution
over them. The automatic detection of objects that violate the
imposed priors was studied with favorable results, promising
applicability in safety applications. Several points are still
open, in particular how to correctly encode vector fields
(with or without speed component). A subset of Gaussian-
distributed particles with modified speed vectors, as used
in this article, is a possibility, but other distributions, or a
more complex particle state including potential high-level
behaviors, are conceivable as well. Immediate future work
will include a more representative testing using a marge set

of urban traffic scenarios, provide more findings regarding
the robustness of the proposed methodology.
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